Search results

1 – 10 of over 6000
Article
Publication date: 1 August 2003

Jean‐Yves Rosaye, Pierre Mialhe and Jean‐Pierre Charles

The present experiments are intended to help characterize defects in very thin MOS oxide and at its Si/SiO2 interface using a temperature‐dependent electrical characterization…

Abstract

The present experiments are intended to help characterize defects in very thin MOS oxide and at its Si/SiO2 interface using a temperature‐dependent electrical characterization method, high low temperature capacitance voltage method and, especially, to investigate high temperature range. Oxide‐fixed traps are differentiated from slow‐state traps and from fast‐state traps by evaluating their electrical behaviour at different temperatures. The analysis points out the excess current after Fowler Nordheim electron injection based on hole generation, trapping, and hopping transport at high temperatures. The defect relaxation property versus temperature is investigated and defect relaxation activation energies are calculated. Creation mechanisms of interface states are especially identified by injection at different temperatures and these are compared with the other two kinds of defects. Fast‐state traps and all defect cross‐sections are calculated along and their creation activation energies are determined from Arrhenius plots.

Details

Microelectronics International, vol. 20 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1976

P.L. Hurricks

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general…

Abstract

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general mechanism for fretting is discussed at all temperatures where normal oxidative processes become involved. The nature of fretting wear is also covered and the effects of temperature are described. In this part of the paper, the discussion is continued to include triboxidation, delamination theory, atmospheric environment, transition temperatures, activitation energy and other factors affecting the influence of temperature on fretting.

Details

Industrial Lubrication and Tribology, vol. 28 no. 1
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 5 May 2015

H. Abd El-Wahab, A.M. Hassan, A.M. Naser, O.A. Fouad, A.M. El-Din and O.A.G. Wahba

The purpose of this paper was to prepare and evaluate a nanosized mixed calcium iron oxide as a high heat-resistant pigment. Heat-resistant pigments can be defined as chemical…

Abstract

Purpose

The purpose of this paper was to prepare and evaluate a nanosized mixed calcium iron oxide as a high heat-resistant pigment. Heat-resistant pigments can be defined as chemical substances that impart color to a substrate or binder and retain their color and finish at elevated temperatures. Mixed metal oxides have been widely used as pigments in coating formulations.

Design/methodology/approach

This work presents synthesis of nanosized calcium iron oxide as an inorganic pigment by using simple synthesis technique, namely, solid-state calcination method, to study its heat and corrosion resistance. The prepared pigment was characterized by using X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductive coupling plasma. It was incorporated into paint formulations, and the heat, corrosion and mechanical resistance of dry paint film was evaluated.

Findings

In this work, the prepared calcium iron oxide pigment showed excellent heat and corrosion resistance.

Research limitations/implications

Heat-resistant coatings are required for industrial applications, mainly for reactors, exhaust pipes, space craft, stacks and similar equipments that are permanently and occasionally exposed to elevated temperatures. It was previously quite difficult to formulate heat-resistant organic coatings because of binder deficiencies; new vehicles for such applications are now available. Thus, the development of silicon resins has markedly advanced the utility of heat-resistant paints. High-temperature pigments are inorganic chemical compounds that impart and retain their color and finish to a substrate or binder at elevated temperatures.

Practical implications

The nanosized mixed calcium iron oxide could be used as a pigment in paint formulations. It was found that it significantly enhances the heat, corrosion and mechanical resistance. It can also find numerous applications in other paint formulations for surface coating.

Originality/value

The paper shows how the pigment consisting nanosized mixed calcium iron oxide could be used in heat-resistant paint formulations for coating metal surfaces.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 August 2018

Yanzhong Wang and Chao Guo

This paper aims to study the change rule of sintered iron friction properties under high temperature and establish the model to predict the friction coefficient.

Abstract

Purpose

This paper aims to study the change rule of sintered iron friction properties under high temperature and establish the model to predict the friction coefficient.

Design/methodology/approach

The morphological measurements of sintered iron material with four different oxidation degrees are carried out. A prediction model of friction coefficient in high temperature oxide growth stage for sintered iron material is established based on the theory of flash temperature and adhesion friction. The relationship between friction coefficient and the key parameters is found through the test fitting.

Findings

The surface topography changes with oxidative wear. The wear debris will be compacted and sintered again to form a composite oxide layer with the temperature increasing. The validity and accuracy of proposed model are tested using the friction coefficient and temperature experiments. Results are in reasonable agreement with those obtained using values of load commonly used.

Originality/value

The significance lies in the change mechanism of high temperature friction characteristic is clarified. Three friction stages related to temperature of dry friction are put forward for sintered iron, and a meaningful reference is provided by the established model for high-temperature performance design of sintered iron friction material.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 2006

H. Singh, D. Puri, S. Prakash and M. Srinivas

To characterise the high temperature oxide scales for some plasma sprayed NiCrAlY coated Ni‐ and Fe‐based superalloys.

Abstract

Purpose

To characterise the high temperature oxide scales for some plasma sprayed NiCrAlY coated Ni‐ and Fe‐based superalloys.

Design/methodology/approach

Ni‐22Cr‐10Al‐1Y metallic coatings were deposited on two Ni‐based superalloys; Superni 601 and Superni 718 and one Fe‐based superalloy; Superfer 800H by the shrouded plasma spray process. Oxidation studies were conducted on uncoated as well as plasma spray coated superalloys in air at 900°C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. X‐ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxide scales.

Findings

All of the coated, as well as the uncoated, superalloys followed an alnost‐parabolic rate of oxidation. The NiCrAlY coating was found to be successful in maintaining its continuous contact with the superalloy substrates in all the cases. The oxide scales formed on the exposed NiCrAlY coated superalloys were found to be intact and spallation‐free. The main phases analysed for the coated superalloys were oxides of nickel, chromium and aluminium and spinel of nickel and chromium, which are expected to be useful for developing oxidation resistance at high temperatures.

Practical implications

The coated superalloys showed remarkable cyclic oxidation resistance under simulated laboratory conditions. However, it is suggested that these coated superalloys also should be tested in actual industrial environments of boilers and gas turbines, etc. so as to obtain more practical and reliable oxidation data.

Originality/value

The knowledge of the reaction kinetics and the nature of the surface oxide scales formed during oxidation is important for evaluating the alloys for their use and degradation characteristics in high temperature applications such as steam boilers, furnace equipment, heat exchangers and piping in chemical industry, reformer, baffle plates/tubes in fertilizer plants, jet engines, pump bodies and parts.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 May 1954

Alexander Pechman

THE advent of the modern jet‐type power plant for aviation has greatly accelerated the development of new hightemperature ceramic materials. These power plants are essentially…

Abstract

THE advent of the modern jet‐type power plant for aviation has greatly accelerated the development of new hightemperature ceramic materials. These power plants are essentially hightemperature engines which convert heat energy into work. The greater the differential in temperature of the air between the beginning and end of the conversion, the greater the efficiency of the engine. Consequently, turbo‐jets, gas turbines, ram‐jets and rockets have created a demand for materials which will withstand elevated temperatures and vibration and possess good resistance to thermal shock. Ceramic materials seem to offer the best promise of providing these desirable characteristics.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1963

E.R. BRAITHWAITE and G.W. ROWE

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the…

Abstract

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the torn sides of his beast gave the first solid lubricant. Blood and mutton fat were seriously recommended as lubricants for church bell trunnions as recently as the 17th century. Indoed we still reckon fatty acids the best of all boundary lubricants. The range of man's activities has increased enormously in the present century, and particularly in the last few decades. Men have circled the earth in space; a space ship is on its way to examine another planet; terrestrial man is boring to the bottom of the earth's crust; others have descended to the depths of the ocean, and oven established a home on the floor of the Mediterranean, Speeds have increased by factors of thousands, temperatures range from near absolute zero to thousands of degrees; and a new environment of high‐intensity nuclear radiation has been created. Still, objects must move over and along each other in these exotic conditions; and to a large extent solid lubricants can provide the answer to the frictional problems.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 5 August 2021

Sushanth Bavirisetti and Mithilesh Kumar Sahu

The purpose of this paper is to analyze the performance of the gas turbine cycle integrated with solid oxide fuel cell technology. In the present work, intermediate temperature

Abstract

Purpose

The purpose of this paper is to analyze the performance of the gas turbine cycle integrated with solid oxide fuel cell technology. In the present work, intermediate temperature solid oxide fuel cell has been considered, as it is economical, can attain an activation temperature in a quick time, and also have a longer life compared to a high-temperature solid oxide fuel cell, which helps in the commercialization and can generate two ways of electricity as a hybrid configuration.

Design/methodology/approach

The conceptualized cycle has been analyzed with the help of computer code developed in MATLAB with the help of governing equations. In this work, the focus is on the performance investigation of a Gas turbine intermediate temperature solid oxide fuel cell hybrid cycle. The work also analyzes the performance behavior of the proposed cycle with various design and operating parameters.

Findings

It is found that the power generation efficiency of the IT-SOFC-GT hybrid system reaches up to 60% (LHV) for specific design and operating conditions. The cycle calculations of an IT-SOFC-GT hybrid system and its conceptual design have been presented in this work.

Originality/value

The unique feature of this work is that IT-SOFC has been adopted for integration instead of HT-SOFC, and this work also provides the performance behavior of the hybrid system with varying design and operating parameters, which is the novelty of this work. This work has significant scientific merit, as the cost involved for the commercialization of IT-SOFC is comparatively lower than HT-SOFC and provides a good option to energy manufacturers for generating clean energy at a low cost.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 May 2008

M. Mobin and S.K. Hasan

The purpose of this paper is to present the results of studies on the reaction of metal oxides such as Cr2O3 and Al2O3 with Na2SO4 in flowing SO2 (g) at 1,100 and 1,200 K.

2441

Abstract

Purpose

The purpose of this paper is to present the results of studies on the reaction of metal oxides such as Cr2O3 and Al2O3 with Na2SO4 in flowing SO2 (g) at 1,100 and 1,200 K.

Design/methodology/approach

The oxides chosen for the studies were initial scaling products during the oxidation of industrial alloys and invariably are involved in hot‐corrosion reactions in the presence of molten salts. The thermo‐gravimetric studies for the system were carried out as a function of Na2SO4 in the mixture. The different constituents in the reaction products were identified by XRD analysis and morphologies of the reaction products were discussed on the basis of optical metallography and scanning electron microscopic studies. The pH and conductivity of the aqueous solutions of reaction products were measured and an attempt made to functionalize these parameters with Na2SO4 concentration in the mixture. Quantitative estimation of the soluble metal was carried out using an atomic absorption spectrophotometer. The formation of products was investigated by thermodynamic computation of free energies of the reactions and the study of relevant phase stability diagrams.

Findings

Looking at the complex nature of the reactions, it is difficult to generalize the conductance studies, as many complex species are liable to hydrolyze in the aqueous solution. However, the break in few curves at certain mole fraction of Na2SO4 indicates the presence of soluble complex species.

Originality/value

The paper provides information regarding the reaction between a pertinent oxide and Na2SO4 and proper identification of reaction products, useful for understanding the occurrence and importance of fluxing reactions and in the interpretation of hot corrosion mechanism and the development of new protective materials.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2019

Jinsong Luo, Ligong Zhang, Haigui Yang, Nan Zhang, Yongfu Zhu, Xingyuan Liu and Qing Jiang

This paper aims to study the oxidation kinetics of the nanocrystalline Al ultrathin films. The influence of structure and composition evolution during thermal oxidation will be…

147

Abstract

Purpose

This paper aims to study the oxidation kinetics of the nanocrystalline Al ultrathin films. The influence of structure and composition evolution during thermal oxidation will be observed. The reason for the change in the oxidation activation energy on increasing the oxidation temperature will be discussed.

Design/methodology/approach

Al thin films are deposited on the silicon wafers as substrates by vacuumed thermal evaporation under the base pressure of 2 × 10−4 Pa, where the substrates are not heated. A crystalline quartz sensor is used to monitor the film thickness. The film thickness varies in the range from 30 to 100 nm. To keep the silicon substrate from oxidation during thermal oxidation of the Al film, a 50-nm gold film was deposited on the back side of silicon substrate. Isothermal oxidation studies of the Al film were carried out in air to assess the oxidation kinetics at 400-600°C.

Findings

The activation energy is positive and low for the low temperature oxidation, but it becomes apparently negative at higher temperatures. The oxide grains are nano-sized, and γ-Al2O3 crystals are formed at above 500°C. In light of the model by Davies, the grain boundary diffusion is believed to be the reason for the logarithmic oxidation rate rule. The negative activation energy at higher temperatures is apparent, which comes from the decline of diffusion paths due to the formation of the γ-Al2O3 crystals.

Originality/value

It is found that the oxidation kinetics of nanocrystalline Al thin films in air at 400-600°C follows the logarithmic law, and this logarithmic oxidation rate law is related to the grain boundary diffusion. The negative activation energies in the higher temperature range can be attributed to the formation of γ-Al2O3 crystal.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 6000