Search results

1 – 10 of over 34000
Article
Publication date: 3 March 2020

Vitus Mwinteribo Tabie, Chong Li, Wang Saifu, Jianwei Li and Xiaojing Xu

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

1155

Abstract

Purpose

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

Design/methodology/approach

Following a brief introduction of titanium (Ti) alloys, this paper considers the near-α group of Ti alloys, which are the most popular high-temperature Ti alloys developed for a high-temperature application, particularly in compressor disc and blades in aero-engines. The paper is relied on literature within the past decade to discuss phase stability and microstructural effect of alloying elements, plastic deformation and reinforcements used in the development of these alloys.

Findings

The near-a Ti alloys show high potential for high-temperature applications, and many researchers have explored the incorporation of TiC, TiB SiC, Y2O3, La2O3 and Al2O3 reinforcements for improved mechanical properties. Rolling, extrusion, forging and some severe plastic deformation (SPD) techniques, as well as heat treatment methods, have also been explored extensively. There is, however, a paucity of information on SiC, Y2O3 and carbon nanotube reinforcements and their combinations for improved mechanical properties. Information on some SPD techniques such as cyclic extrusion compression, multiaxial compression/forging and repeated corrugation and straightening for this class of alloys is also limited.

Originality/value

This paper provides a topical, technical insight into developments in near-a Ti alloys using literature from within the past decade. It also outlines the future developments of this class of Ti alloys.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 1955

Alan Levy

THE use of metals at temperatures in excess of 1,200 deg. F. and up to temperatures in the vicinity of their melting points is a challenging and fascinating portion of the fight…

75

Abstract

THE use of metals at temperatures in excess of 1,200 deg. F. and up to temperatures in the vicinity of their melting points is a challenging and fascinating portion of the fight to pass the heat barrier in the design and performance of aircraft and their power plants. The materials available for service in this temperature range are restricted. The considerations of designing structural components involve many more problems than the old criteria of strength to weight ratio and fabrication costs. Such properties as thermal expansion, heat conductivity, surface emissivity and scaling resistance are as important in determining which metal should be used for a given application as are the various measurements of strength heretofore the primary considerations in material selection.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 19 October 2015

Sunil Kumar Tiwari, Sarang Pande, Sanat Agrawal and Santosh M. Bobade

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the…

3875

Abstract

Purpose

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements.

Design/methodology/approach

The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials.

Findings

Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts.

Originality/value

The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2021

Habeeb Mousa and Kasif Teker

The purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based…

Abstract

Purpose

The purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based field-effect transistor (SiC-NWFET). The 3C-SiC nanowires can endure high-temperature environments due to their wide bandgap, high thermal conductivity and outstanding physical and chemical properties.

Design/methodology/approach

The metal-organic chemical vapor deposition process was used to synthesize in-situ nitrogen-doped SiC nanowires on SiO2/Si substrate. To fabricate the proposed SiC-NWFET device, the dielectrophoresis method was used to integrate the grown nanowires on the surface of pre-patterned electrodes onto the SiO2 layer on a highly doped Si substrate. The transport properties of the fabricated device were evaluated at various temperatures ranging from 25°C to 350°C.

Findings

The SiC-NWFET device demonstrated an increase in conductance (from 0.43 mS to 1.2 mS) after applying a temperature of 150°C, and then a decrease in conductance (from 1.2 mS to 0.3 mS) with increasing the temperature to 350°C. The increase in conductance can be attributed to the thermionic emission and tunneling mechanisms, while the decrease can be attributed to the phonon scattering. Additionally, the device revealed high electron and hole mobilities, as well as very low resistivity values at both room temperature and high temperatures.

Originality/value

High-temperature transport properties (above 300°C) of 3C-SiC nanowires have not been reported yet. The SiC-NWFET demonstrates a high transconductance, high electron and hole mobilities, very low resistivity, as well as good stability at high temperatures. Therefore, this study could offer solutions not only for high-power but also for low-power circuit and sensing applications in high-temperature environments (∼350°C).

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature

1454

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2000

Michael Fosmire

The phenomenon of superconductivity has been studied for 90 years, with the latest surge in popularity occurring in the late 1980s, when hightemperature superconductors were…

Abstract

The phenomenon of superconductivity has been studied for 90 years, with the latest surge in popularity occurring in the late 1980s, when hightemperature superconductors were first created. In this time much progress has been made to create commercially viable applications of the technology and understand the theory behind the phenomenon. Furthermore, at a time when national science policy was undergoing close scrutiny, the hightemperature superconductor boom served as a high‐profile case study of the role of government in spurring the acceptance of new technologies. This bibliography provides resources that chronicle the technological and scientific developments in the field since its discovery and the policy decisions and issues that governments and society made when faced with a possible scientific revolution.

Details

Reference Services Review, vol. 28 no. 2
Type: Research Article
ISSN: 0090-7324

Keywords

Article
Publication date: 28 June 2022

Rizk Mostafa Shalaby and Musaeed Allzeleh

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free…

Abstract

Purpose

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free solder.

Design/methodology/approach

In this paper, a new group of lead-free high-temperature Pb-free solder bearing alloys with five weight percentages of different silver additions, Bi-Agx (x = 3.0, 3.5, 4.0, 4.5 and 5.0 Wt.%) have been developed by rapidly solidification processing (RSP) using melt-spun technique as a promising candidate for the replacement of conventional Sn-37Pb common solder. The effect of the addition of a small amount of Ag on the structure, microstructure, thermal and properties of Bi-Ag solder was analyzed by means of X-ray diffractometer, scanning electron microscopy, differential scanning calorimetry and Vickers hardness technique. Applying the RSP commonly results in departures from conventional microstructures, giving an improvement of grain refinement. Furthermore, the grain size of rhombohedral hexagonal phase Bi solid solution and cubic IMC Bi0.97Ag0.03 phase is refined by Ag addition. Microstructure analysis of the as soldered revealed that relatively uniform distribution, equiaxed refined grains of secondary IMC Bi0.97Ag0.03 particles about 10 µm for Bi-Ag4.5 dispersed in a Bi matrix. The addition of trace Ag led to a decrease in the solidus and liquidus temperatures of solder, meanwhile, the mushy zone is about 11.4°C and the melting of Sn-Ag4.5 solder was found to be 261.42°C which is lower compared with the Sn-Ag3 solder 263.60°C. This means that the silver additions into Bi enhance the melting point. The results indicate that an obvious change in electrical resistivity (?) at room temperature was noticed by the Ag addition. It was also observed that the Vickers microhardness (Hv) was increased with Ag increasing from 118 to 152 MPa. This study recommended the use of the Bi-Ag lead-free solder alloys for higher temperature applications.

Findings

Silver content is very important for the soldering process and solder joint reliability. Based on the present investigations described in this study, several conclusions were found regarding an evaluation of microstructural and mechanical deformation behavior of various Bi-Ag solders. The effect of Ag and rapid solidification on the melting characteristics, and microstructure of Bi-Ag alloys were studied. In addition, the mechanical properties of Bi with different low silver were investigated. From the present experimental study, the following conclusions can be drawn. The addition of Ag had a marked effect on the melting temperature of the lead-free solder alloys, it decreases the melting temperature of the alloy from 263.6 to 261.42°C. Bi-Ag solders are comprised of rhombohedral Hex. Bi solid solution and cubic Ag0.97Bi0.03 IMC is formed in the Bi matrix. The alloying of Ag could refine the primary Bi phase and the Bi0.97Ag0.03 IMC. With increasing Ag content, the microstructure of the Bi-Ag gradually changes from large dimples into tiny dimple-like structures. The refinement of IMC grains was restrained after silver particles were added into the matrix. The inhibition effect on the growth of IMC grains was most conspicuous when solder was doped with Ag particles. As a result, the Vickers microhardness of the Bi-Ag lead-free solder alloys was enhanced by more than 100% ranging from 118.34 to 252.95 MPa. Bi-Ag high-temperature lead-free solders are a potential candidate for replacing the tin-lead solder (Sn-37Pb) materials which are toxic to human and the environment and has already been banned.

Originality/value

This study recommended the use of the Bi-Ag lead-free solder alloys for high-temperature applications.

Details

Soldering & Surface Mount Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 February 2011

Thomas Apeldorn, F. Wolff‐Fabris and V. Altstädt

The purpose of this paper is to investigate and present the properties of a new substrate material based on thermoplastic polymers (so‐called LuVo Board) for high‐frequency…

Abstract

Purpose

The purpose of this paper is to investigate and present the properties of a new substrate material based on thermoplastic polymers (so‐called LuVo Board) for high‐frequency applications.

Design/methodology/approach

The thermal, mechanical and electrical properties of a new thermoplastic substrate are investigated and compared to conventional substrates for printed circuit board (PCB) applications.

Findings

The new LuVo Board exhibits similar properties to commercially available high‐performance substrates. The main advantage of the LuVo Board is a reduction of manufacturing costs in comparison to conventional substrates, as a highly automated manufacturing process can be employed. Moreover, the LuVo Board exhibits some further advantages: the material is inherently flame resistant and can be thermally shaped after the assembly process.

Originality/value

This paper presents an entirely new thermoplastic substrate, which can be employed in high‐frequency applications. In comparison to standard materials, a further advantage of the thermoplastic substrate is lower production costs.

Details

Circuit World, vol. 37 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 October 2021

Zhen Pan and Fenglian Sun

The purpose of this paper is to design a novel die-attach composite joint for high-temperature die-attach applications based on transient liquid phase bonding. Moreover, the…

Abstract

Purpose

The purpose of this paper is to design a novel die-attach composite joint for high-temperature die-attach applications based on transient liquid phase bonding. Moreover, the microstructure, shear strength, electrical property, thermal conductivity and aging property of the composite joint were investigated.

Design/methodology/approach

The composite joint was made of microporous copper and Cu3Sn. Microporous copper was immersed into liquid Sn to achieve Sn-microporous copper composite structure for die attachment. By the thermo-compression bonding, the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained after bonding at 350 °C for 5 min under a low pressure of 0.6 MPa.

Findings

After thermo-compression bonding, the resulting interconnection could withstand a high temperature of at most 676 °C, with the entire Sn transforming into Cu3Sn with high remelting temperatures. A large shear strength could be achieved with the Cu3Sn-microporous copper in the interconnections. The formed bondlines demonstrated a good electrical and thermal conductivity owing to the large existing amount of copper in the interconnections. Furthermore, the interconnection also exhibited excellent reliability under high temperature aging at 300 °C.

Originality/value

This die-attach composite joint was suitable for power devices operating under high temperatures or other harsh environments.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 34000