Search results

1 – 10 of over 14000
Article
Publication date: 20 June 2023

Kei Kimura, Takeshi Onogi and Fuminobu Ozaki

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain…

Abstract

Purpose

This work examines the effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures, through tensile coupon tests at various strain rates, to propose appropriate reduction factors considering the strain rate effect.

Design/methodology/approach

The stress–strain relationships of 385 N/mm2, 440 N/mm2 and 630 N/mm2-class steel plates at elevated temperatures are examined at three strain rate values (0.3%/min, 3.0%/min and 7.5%/min), and the reduction factors for the effective yield strength at elevated temperatures are evaluated from the results. A differential evolution-based optimization is used to produce the reduction-factor curves.

Findings

The strain rate effect enhances with an increase in the standard design value of the yield point. The effective yield strength and standard design value of the yield point exhibit high linearity between 600 and 700 °C. In addition to effectively evaluating the test results, the proposed reduction-factor curves can also help determine the ultimate strength of a steel member at collapse.

Originality/value

The novelty of this study is the quantitative evaluation of the relationship between the standard design value of yield point at ambient temperature and the strain-rate effect at elevated temperatures. It has been observed that the effect of the strain rate at elevated temperatures increases with the increase in the standard design value of the yield point for various steel strength grades.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

42

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 15 December 2021

Fuminobu Ozaki, Ying Liu and Kai Ye

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic…

Abstract

Purpose

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic stainless-steel bars, and the load-bearing capacity of single overlapped screwed connections using steel sheets and self-drilling screws at elevated temperatures.

Design/methodology/approach

Tensile/shear loading tests for the self-drilling screw were conducted to obtain basic information on the tensile and shear strengths at elevated temperatures and examine the relationships between both. Shear loading tests for the screwed connections at elevated temperatures were conducted to examine the shear strength and transition of failure modes depending on the test temperature.

Findings

The tensile and shear strengths as well as the reduction factors at the elevated temperature for each steel grade of the self-drilling screw were quantified. Furthermore, either screw shear or sheet bearing failure mode depending on the test temperature was observed for the screwed connection.

Originality/value

The transition of the failure modes for the screwed connection could be explained using the calculation formulae for the shear strengths at elevated temperatures, which were proposed in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 October 2022

Yulin Li, Jiabao Wang, Hang Zhang and Ruilin Pei

The purpose of the paper is to make a high speed motor based on the characteristics of high strength silicon steel. With the higher requirements for torque density and power…

Abstract

Purpose

The purpose of the paper is to make a high speed motor based on the characteristics of high strength silicon steel. With the higher requirements for torque density and power density of the driving system of electric vehicles (EV), conventional magnetic materials have been difficult to meet the demands in the future. In this paper, a new type of high-strength non-grain-oriented (NGO)material is tested.

Design/methodology/approach

Through analyzing the characteristic of high strength silicon steel, it is applied to the rotor part of a high-speed motor. A topological optimization is applied to achieve higher power density and higher efficiency of the motor.

Findings

The feasibility of the scheme was analyzed by the finite element method, and a prototype was also fabricated to verify the analysis.

Originality/value

In this paper, the characteristics of new soft magnetic materials as a breakthrough to manufacture a new generation of high-performance electrical machine (EM) are discussed. Consequently, the presented work greatly facilitates further explorations and guides the innovative application of soft magnetic materials and the iterative optimization of motor structure.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 August 2017

Peter Schaumann and Inka Kleibömer

This paper deals with experimental and numerical investigations of the composite behaviour within concrete-filled tubular columns with embedded massive steel core (CFTES columns)…

Abstract

Purpose

This paper deals with experimental and numerical investigations of the composite behaviour within concrete-filled tubular columns with embedded massive steel core (CFTES columns). As the inner profile provides the main load-bearing capacity, the load introduction and transfer is of particular interest for the structural detailing of CFTES columns. Currently, no specific design regulations are available – neither for room temperature nor fire design. The presented investigations provide a basis for design recommendations and numerical approaches on reliable shear stresses.

Design/methodology/approach

Three series of push-out tests at room temperature and high temperatures are analysed in terms of ultimate shear strength, bond strength and shear strength-displacement-curve shape. The test parameters involve the steel core diameter and concrete cover, applying normal strength steel and concrete. Furthermore, a three-dimensional finite element model of the push-out tests is set up in Abaqus. The model implies temperature-dependent contact properties derived from the experimental tests using the cohesive behaviour method.

Findings

The test data reveal a distinctive reduction in both ultimate shear and bond strength for high temperatures. For high temperatures, the thermal expansion coefficients dominate the composite behaviour. Using the 3D numerical model and applying a temperature-dependent joint stiffness, maximum shear stress criterion and damage evolution, the observed composite behaviour can be described in a realistic manner.

Originality/value

The presented experimental investigations are unique, both concerning the investigated column type and performing push-out tests at high temperatures. For the first time, a temperature-dependent reduction of capable shear stresses is identified, which is crucial for the design of structural components.

Details

Journal of Structural Fire Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 April 1961

A.J. Kennedy and A.R. Sollars

THE previous articles in this series, concerning the titanium, magnesium and aluminium alloys, followed a very similar form, in that in each case consideration of the aircraft…

Abstract

THE previous articles in this series, concerning the titanium, magnesium and aluminium alloys, followed a very similar form, in that in each case consideration of the aircraft engineering applications was preceded by a metallurgical appreciation of the alloy systems under review. In the case of steels, a comprehensive article on similar lines would be nothing less than a monograph, and if steels are to be discussed within the space of a single article, then a quite different approach must be adopted. This review will not, then, examine steels generally in any great metallurgical detail, but will rather consider their special merits in aircraft engineering, particularly in the context of supersonic aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 June 2017

Xuhong Qiang, Nianduo Wu, Xu Jiang, Frans Bijlaard and Henk Kolstein

This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire.

Abstract

Purpose

This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire.

Design/methodology/approach

An experimental and numerical study on seven endplate connections after cooling down from fire temperature of 550°C has been carried out and reported herein. Moreover, the provisions of European design standard for steel structures, Eurocode 3, were validated with test results of high strength steel endplate connections.

Findings

In endplate connections, a proper design using a thinner high strength steel endplate can achieve the same failure mode, similar residual load bearing capacity and comparable or even higher rotation capacity after cooling down from fire. It is found that high strength steel endplate connection can regain more than 90 per cent of its original load bearing capacity after cooling down from fire temperature of 550°C.

Originality/value

The post-fire performance of high strength steel endplate connection has been reported. The accuracy of Eurocode 3 for endplate connections is validated against test results.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 July 2022

G. Jaya Kumar, Tattukolla Kiran, N. Anand and Khalifa Al-Jabri

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS…

Abstract

Purpose

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS sections exposed to elevated temperature need to be investigated as it is necessary to predict the deterioration of elements to avoid failure of the structure or its elements. Also, it would be helpful to decide whether the structural elements need to be replaced or reused. The use of fire-resistant coatings in steel structures significantly reduces the cost of repairing structural elements and also the probability of collapse. This study investigates the effect of fire-resistant coating on post-fire residual mechanical properties of E350 steel grade.

Design/methodology/approach

In this study, an attempt has been made to evaluate the residual mechanical properties of E350 steel. A tensile coupon test was performed for the extracted specimens from the exposed CFS section to determine the mechanical properties. Four different fire-resistant coatings were selected and the sections were coated and heated as per ISO 834 fire temperature curve in the transient state for time durations of 30 minutes (821°C), 60 minutes (925°C), 90 minutes (986°C), and 120 minutes (1,029°C). After the exposure, all the coupon specimens were cooled by either ambient conditions (natural air) or water spraying before conducting the tension test on these specimens.

Findings

At 30 min exposure, the reduction in yield and ultimate strength of heated specimens was about 20 and 25% for air and water-cooled specimens compared with reference specimens. Specimens coated with vermiculite and perlite exhibited higher residual mechanical property up to 60 minutes than other coated specimens for both cooling conditions. Generally, water-cooled specimens had shown higher strength loss than air-cooled specimens. Specimens coated with vermiculite and perlite showed an excellent performance than other specimens coated with zinc and gypsum for all heating durations.

Originality/value

As CFS structures are widely used in construction practices, it is crucial to study the mechanical properties of CFS under post-fire conditions. This investigation provides detailed information about the physical and mechanical characteristics of E350 steel coated with different types of fire protection materials after exposure to elevated temperatures. An attempt has been made to improve the residual properties of CFS using the appropriate coatings. The outcome of the present study may enable the practicing engineers to select the appropriate coating for protecting and enhancing the service life of CFS structures under extreme fire conditions.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 July 1986

K.F. Best and B. Sc(Eng)

This article is written from the viewpoint of a structures engineer who has to make the best use of the materials available, rather than that of the metallurgist who aids their…

Abstract

This article is written from the viewpoint of a structures engineer who has to make the best use of the materials available, rather than that of the metallurgist who aids their production or development.

Details

Aircraft Engineering and Aerospace Technology, vol. 58 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 13 June 2016

Xuhong Qiang, Xu Jiang, Frans Bijlaard and Henk Kolstein

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Abstract

Purpose

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Design/methodology/approach

First, experimental tests on high strength steel endplate connections were conducted at fire temperature 550°C and at an ambient temperature for reference.

Findings

The moment-rotation characteristic, rotation capacity and failure mode of high-strength-steel endplate connections in fire and at an ambient temperature were obtained through tests and compared with those of mild-steel endplate connections. Further, the provisions of Eurocode 3 were validated with test results. Moreover, the numerical study was carried out via ABAQUS and verified against the experimental results.

Originality/value

It is found that a thinner high-strength-steel endplate can enhance the connection’s rotation capacity both at an ambient temperature and in fire (which guarantees the safety of an entire structure) and simultaneously achieve almost the same moment resistance with a mild steel endplate connection.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 14000