Search results

1 – 10 of over 74000
Article
Publication date: 1 June 2003

A. Al‐Salaymeh, M. Alhusein and F. Durst

Thermal flow sensors with a wide dynamic range are at present not available in spite of the large demand which exists for such sensors in practical fluid flow measurements. In…

Abstract

Thermal flow sensors with a wide dynamic range are at present not available in spite of the large demand which exists for such sensors in practical fluid flow measurements. In this paper, it is shown that the velocity range of a “time‐of‐flight” thermal flowmeter for slowly changing flows can be increased by using wires (or other heating/sensing elements) with large thermal inertia (time constant) and heating the sending wire with a continuous sinusoidal current, instead of discrete, very short, square‐wave pulses as in the usual pulsed‐wire anemometer. The device described here uses two parallel wires of 12.5μm diameter and its usable speed range is 0.05 to 25m/s. Although the present thermal flowmeter can be applied as a point measurement device, the main applications are in pipe flow, especially at very low flow rates. The high sensitivity at low flow rates makes the device especially suitable for this purpose.

Details

Journal of Quality in Maintenance Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 6 July 2015

Xinlong Wang and Shuai Song

– The purpose of this paper is to improve the tracking performance of the tracking loops under high dynamic and severe jamming conditions.

Abstract

Purpose

The purpose of this paper is to improve the tracking performance of the tracking loops under high dynamic and severe jamming conditions.

Design/methodology/approach

First, as the two dominant measurement error sources of the tracking loops, the thermal noise jitter and the dynamic stress error are thoroughly analyzed. Second, a scheme of adaptive tracking loops, which could adaptively adjust the order and the bandwidth of tracking loops, is proposed. Third, real-time detections of the vehicle dynamics and the carrier-to-noise density ratio, and the adaptive bandwidth of the carrier loop are presented, respectively. Finally, simulations are operated to validate the excellent tracking performance of the adaptive tracking loops.

Findings

Based on the principle of minimizing the measurement errors, the loop order and bandwidth are adaptively adjusted in the proposed scheme. Thus, the anti-jamming capability and dynamic tracking performance of the tracking loops could be effectively enhanced.

Practical implications

This paper provides further study on the method of improving the tracking capability under complexly applied conditions of high dynamics and severe jamming.

Originality/value

The detections of carrier-to-noise density ratio and vehicle dynamics are used to adaptively adjusting the loop order and bandwidth, which could not only improve the measurement accuracy but also ensure the stable operation of tracking loops.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 26 August 2014

Lounis Chermak, Nabil Aouf and Mark Richardson

In visual-based applications, lighting conditions have a considerable impact on quality of the acquired images. Extremely low or high illuminated environments are a real issue for…

Abstract

Purpose

In visual-based applications, lighting conditions have a considerable impact on quality of the acquired images. Extremely low or high illuminated environments are a real issue for a majority of cameras due to limitations in their dynamic range. Indeed, over or under exposure might result in loss of essential information because of pixel saturation or noise. This can be critical in computer vision applications. High dynamic range (HDR) imaging technology is known to improve image rendering in such conditions. The purpose of this paper is to investigate the level of performance that can be achieved for feature detection and tracking operations in images acquired with a HDR image sensor.

Design/methodology/approach

In this study, four different feature detection techniques are selected and tracking algorithm is based on the pyramidal implementation of Kanade-Lucas-Tomasi (KLT) feature tracker. Tracking algorithm is run over image sequences acquired with a HDR image sensor and with a high resolution 5 Megapixel image sensor to comparatively assess them.

Findings

The authors demonstrate that tracking performance is greatly improved on image sequences acquired with HDR sensor. Number and percentage of finally tracked features are several times higher than what can be achieved with a 5 Megapixel image sensor.

Originality/value

The specific interest of this work focuses on the evaluation of tracking persistence of a set of initial detected features over image sequences taken in different scenes. This includes extreme illumination indoor and outdoor environments subject to direct sunlight exposure, backlighting, as well as dim light and dark scenarios.

Details

Kybernetes, vol. 43 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 August 2021

Muhammad Ahmad Raza Tahir, Muhammad Mubasher Saleem, Syed Ali Raza Bukhari, Amir Hamza and Rana Iqtidar Shakoor

This paper aims to present an efficient design approach for the micro electromechanical systems (MEMS) accelerometers considering design parameters affecting the long-term…

Abstract

Purpose

This paper aims to present an efficient design approach for the micro electromechanical systems (MEMS) accelerometers considering design parameters affecting the long-term reliability of these inertial sensors in comparison to traditional iterative microfabrication and experimental characterization approach.

Design/methodology/approach

A dual-axis capacitive MEMS accelerometer design is presented considering the microfabrication process constraints of the foundry process. The performance of the MEMS accelerometer is analyzed through finite element method– based simulations considering main design parameters affecting the long-term reliability. The effect of microfabrication process induced residual stress, operating pressure variations in the range of 10 mTorr to atmospheric pressure, thermal variations in the operating temperature range of −40°C to 100°C and impulsive input acceleration at different input frequency values is presented in detail.

Findings

The effect of residual stress is negligible on performance of the MEMS accelerometer due to efficient design of mechanical suspension beams. The effect of operating temperature and pressure variations is negligible on energy loss factor. The thermal strain at high temperature causes the sensing plates to deform out of plane. The input dynamic acceleration range is 34 g at room temperature, which decreases with operating temperature variations. At low frequency input acceleration, the input acts as a quasi-static load, whereas at high frequency, it acts as a dynamic load for the MEMS accelerometer.

Originality/value

In comparison with the traditional MEMS accelerometer design approaches, the proposed design approach focuses on the analysis of critical design parameters that affect the long-term reliability of MEMS accelerometer.

Details

Microelectronics International, vol. 38 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 July 2021

Mahdi Valitabar, Mohammadjavad Mahdavinejad, Henry Skates and Peiman Pilechiha

The aim of this paper is to present a parametric design method to generate optimum adaptive facades regarding occupants' comfort and building energy criteria. According to the…

Abstract

Purpose

The aim of this paper is to present a parametric design method to generate optimum adaptive facades regarding occupants' comfort and building energy criteria. According to the literature review, the following questions have arisen to address the research gaps: Is it possible to have the outside view throughout the whole year without discomfort glare by utilising adaptive solar facades (ASFs)? How can architects integrate both view quality and quantity into ASF design? What is the impact of dynamic vertical shading systems mounted on south facades on the outside view, occupants' visual comfort and operational energy? How can we evaluate the view quantity through multi-layer shading systems?

Design/methodology/approach

In recent years, there is a surge in demand for fully glazed buildings, motivating both architects and scholars to explore novel ideas for designing adaptive solar facades. Nevertheless, the view performance of such systems has not been fully explored especially when it comes to the effect of dynamic vertical shading systems mounted on south facades. This fact clarifies the need to conduct more research in this field by taking into account the window view and natural light. Consequently, a simulation research is carried out to investigate the impact of a dynamic shading system with three vertical slats used on the south facade of a single office room located in Tehran, on both view quality and quantity, visual comfort and operational energy. The research attempts to reach a balance between the occupant's requirements and building energy criteria through a multi-objective optimisation. The distinctive feature of the proposed method is generating some optimum shading which could only cover the essential parts of the window area. It was detected from the simulation results that the usage of a dynamic vertical shading system with multi slats for south facades compared to common Venetian blinds can firstly, provide four times more view quantity. Secondly, the view quality is significantly improved through enabling occupants to enjoy the sky layer the entire year. Finally, twice more operational energy can be saved while more natural light can enter the indoor environment without glare. The final outcome of this research contributes toward designing high-performance adaptive solar facades.

Findings

This paper proposes a new metric to evaluate the view quantity through a multi-layer shading system. The proposed method makes it clear that the usage of dynamic vertical shading systems with multi-layers mounted on south facades can bring many benefits to both occupants and building energy criteria. The proposed method could (1) provide four times more view quantity; (2) improve view quality by enabling occupants to watch the sky layer throughout the whole year; (3) slash the operational energy by twice; (4) keep the daylight glare probability (DGP) value in the imperceptible range.

Research limitations/implications

The research limitations that should be acknowledged are ignoring the impact of the adjacent building on sunlight reflection, which could cause discomfort glare issues. Another point regarding the limitations of the proposed optimisation method is the impact of vertical shading systems on users' visual interests. A field study ought to be conducted to determine which one could provide the more desirable outside view: a vertical or horizontal the view. Research on the view performance of ASFs, especially their impact on the quality of view, is sorely lacking.

Originality/value

This paper (1) analyses the performance of dynamic vertical shadings on south facades; (2) evaluates outside view through multi-layer shading systems; and (3) integrates both view quality and quantity into designing adaptive solar facades.

Details

Open House International, vol. 46 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 June 2004

Vladimir Brajović and Takeo Kanade

When a sensor device is packaged together with a CPU, it is called a “smart sensor.” The sensors really become smart when the tight integration of sensing and processing results…

Abstract

When a sensor device is packaged together with a CPU, it is called a “smart sensor.” The sensors really become smart when the tight integration of sensing and processing results in an adaptive sensing system that can react to environmental conditions and consistently deliver useful measurements to a robotic system even under the harshest of the conditions. We illustrate this point with an example from our recent work on illumination‐adaptive algorithm for dynamic range compression that is well suited for an on‐chip implementation resulting in a truly smart image sensor. Our method decides on the tonal mapping for each pixel based on the signal content in pixel's local neighborhood.

Details

Sensor Review, vol. 24 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 May 2014

Luigi Barazzetti

– The purpose of this paper is to present a new multi-image registration methodology that is able to align a set of hand-held bracketed shots.

Abstract

Purpose

The purpose of this paper is to present a new multi-image registration methodology that is able to align a set of hand-held bracketed shots.

Design/methodology/approach

The procedure is a two-step algorithm where corresponding multi-image points are automatically extracted from the bracketed image sequence and a least squares adjustment recovers transformation parameters.

Findings

The images can be processed with high dynamic range algorithms to combine multiple low dynamic range pictures into a single mosaic with a superior radiometric quality.

Originality/value

Simulated and real examples are illustrated to prove the effectiveness of the developed affine-based procedure.

Details

International Journal of Pervasive Computing and Communications, vol. 10 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 31 July 2007

Harikrishnan Ramiah and Tun Zainal Azni Zulkifli

This paper sets out to design and realize a highly linear, wide dynamic range and high switching efficiency integrated CMOS up‐conversion mixer for two‐step IEEE 802.1a WLAN…

Abstract

Purpose

This paper sets out to design and realize a highly linear, wide dynamic range and high switching efficiency integrated CMOS up‐conversion mixer for two‐step IEEE 802.1a WLAN transmitter application in 0.18‐μm deep submicron CMOS technology.

Design/methodology/approach

A folded current draining low‐voltage mixer architecture is explored and an extensive simulation carried out utilizing Cadence Spectre‐RF tool in optimizing the linearity, input third‐order intercept point (IIP3), the dynamic range, 1 dB compression point (P−1dB), power dissipation and reduction of switching quad Cgs, input gate‐source capacitance, in enhancing the switching efficiency of the proposed architecture.

Findings

A highly linear, high input dynamic range, low voltage folded up‐conversion mixer architecture is realized in a significant comparable performance with respect to conventional reported architecture, indicating −8.87 dBm of OIP3 corresponding to 15.27 dBm IIP3 and 4.37 dBm of P−1dB in 0.18‐μm CMOS technology.

Research limitations/implications

The optimized mixer architecture is stringent to an up‐converter application. To be utilized as a down converter at the receiver end, parameters, namely as noise figure and conversion gain, are of additional importance.

Practical implications

The designed folded mixer architecture is in need of integration to a two‐step up‐conversion transmitter architecture which relaxes the injection pulling effect for a given low voltage headroom, with low power dissipation design.

Originality/value

In this work, an integrated folded architecture with on‐chip process, voltage and temperature compensated biasing circuit is explored and enhanced, raising awareness of adapting improved multiplier blocks in achieving optimal performance in WLAN transceiver architecture.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 June 1998

Graham Dalton

Claims recent advances in laser‐based camera technology and 3D analysis software have made production of 3D CAD models from range images a practical proposition. Laser based…

492

Abstract

Claims recent advances in laser‐based camera technology and 3D analysis software have made production of 3D CAD models from range images a practical proposition. Laser based cameras must meet very strict design criteria if they are to operate at long ranges; these criteria are explored. High‐speed laser cameras produce vast quantities of image data; it is shown that this data can be converted swiftly into a 3‐D CAD model.

Details

Sensor Review, vol. 18 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 September 2021

Laura Duarte, Mohammad Safeea and Pedro Neto

This paper proposes a novel method for human hands tracking using data from an event camera. The event camera detects changes in brightness, measuring motion, with low latency, no…

115

Abstract

Purpose

This paper proposes a novel method for human hands tracking using data from an event camera. The event camera detects changes in brightness, measuring motion, with low latency, no motion blur, low power consumption and high dynamic range. Captured frames are analysed using lightweight algorithms reporting three-dimensional (3D) hand position data. The chosen pick-and-place scenario serves as an example input for collaborative human–robot interactions and in obstacle avoidance for human–robot safety applications.

Design/methodology/approach

Events data are pre-processed into intensity frames. The regions of interest (ROI) are defined through object edge event activity, reducing noise. ROI features are extracted for use in-depth perception.

Findings

Event-based tracking of human hand demonstrated feasible, in real time and at a low computational cost. The proposed ROI-finding method reduces noise from intensity images, achieving up to 89% of data reduction in relation to the original, while preserving the features. The depth estimation error in relation to ground truth (measured with wearables), measured using dynamic time warping and using a single event camera, is from 15 to 30 millimetres, depending on the plane it is measured.

Originality/value

Tracking of human hands in 3 D space using a single event camera data and lightweight algorithms to define ROI features (hands tracking in space).

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 74000