Search results

1 – 10 of 23
Article
Publication date: 5 March 2018

Qingxiang Meng, Huanling Wang, Weiya Xu and Qiang Zhang

This paper aims to present a digital image processing (DIP)-based discrete element method (DEM) for the analysis of heterogeneous geomaterials. Taking a soil and rock mixture as…

Abstract

Purpose

This paper aims to present a digital image processing (DIP)-based discrete element method (DEM) for the analysis of heterogeneous geomaterials. Taking a soil and rock mixture as an example, the direct shear test is used to illustrate the application of this method. The numerical result is validated by the laboratory experiment and implies its feasibility in the analysis of heterogeneous geomaterials.

Design/methodology/approach

This method has two major steps. Based on a modification of the connected-component labeling algorithm, a novel vectorization method, which can transform the digital photos to vectorized geometry automatically, is proposed first. Then, a simple yet effective method for the generation of heterogeneous DEM models is presented using the simulation of simplicity technique.

Findings

DIP-DEM method is a feasible approach for the analysis of mechanical behavior of heterogeneous material. For soil and rock mixtures (SRM), the horizantal deformation at peak shear point becomes larger with the normal stress. Compared with pure soil, the rock aggregates mainly improve the friction angle of SRM.

Originality/value

As a universal method taking advantage of both DIP and DEM, this method has broad application prospects in related fields.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 February 2013

Francisco Montero‐Chacón and Fernando Medina

The purpose of this paper is to determine the representative volume element (RVE) size for quasi‐brittle materials using a discrete approach, namely a lattice‐particle model.

Abstract

Purpose

The purpose of this paper is to determine the representative volume element (RVE) size for quasi‐brittle materials using a discrete approach, namely a lattice‐particle model.

Design/methodology/approach

Different material samples are generated and subjected to study regarding its size, maximum aggregate size and boundary conditions. In order to determine the mechanical properties such as the elastic modulus, Poisson's ratio or tensile strength, several tension tests are carried out. For this purpose, a lattice‐particle approach is used to model concrete's fracturing behavior. The information provided by the previous simulations is implemented in a statistical analysis to determine the size of the RVE.

Findings

The determination of the RVE size for quasi‐brittle materials is successfully achieved by means of a lattice‐particle model. Computed results show a good agreement with other results reported in the bibliography.

Originality/value

Within a general multiscale framework, the determination of the RVE size is of great interest and some studies have been performed for random heterogeneous materials. However, these analyses are mainly continuum‐based. The estimation of the RVE size is important for correctly predicting the mechanical properties and can be used in different multiscale schemes.

Article
Publication date: 1 January 1991

ZHEFENG SUN and DENYS BREYSSE

Simplified methods are often employed for the analysis of reinforced concrete beams (R‐C beams). A three‐dimensional problem (3D) is often transformed into a two‐dimensional…

Abstract

Simplified methods are often employed for the analysis of reinforced concrete beams (R‐C beams). A three‐dimensional problem (3D) is often transformed into a two‐dimensional problem (2D) with some assumptions which are usually established in static. The essential reason for this simplification lies in the fact that the 3D finite element analysis is so expensive that it is impossible to study directly the non‐linear behaviour of R‐C beams in many cases. Our purpose is to present a specific method which allows the direct 3D analysis of R‐C beams with a suitable numerical cost. First, the 3D linear heterogeneous beam theory is briefly recalled as well as the continuum damage model used for concrete. Second, the non‐linear behaviour of concrete is introduced in the 3D beam theory. Several numerical examples illustrate the effectiveness of the method.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 May 2021

Farid Terbouche, Ali Hamza and Smail Gabi

The purpose of this paper is the analysis of the dissipation of pore water pressures in the core of an earth dam, under the effect of water level fluctuations in the reservoir…

Abstract

Purpose

The purpose of this paper is the analysis of the dissipation of pore water pressures in the core of an earth dam, under the effect of water level fluctuations in the reservoir under operating conditions, taking into account the partial emptying and filling.

Design/methodology/approach

The Taksebt Dam, Tizi-Ouzou, Algeria was chosen as a case study, using a two-dimensional transient finite element numerical model. The GeoStudio calculation software is used through the SEEP/W. The latter takes into account the flow in the saturated and unsaturated zone, the formulation of SEEP/W allows the analysis of the dissipation of pore water pressures in the dyke. Starting from the maximum level of the reservoir, at least one cycle of partial emptying-filling was modelled over an eight-year operating period from 2011 to 2019. The input variables were the water level variation curve, material properties and boundary conditions.

Findings

It can be concluded that the numerical results obtained from the simulation model on the different points studied, namely, the pore water pressures are satisfactory as long as they are close to those recorded in the field by the pore pressure cells with an average error not exceeding 10% except for some measurements where the error is 20%. When the water level in the reservoir varies, the pore water pressures vary and their behaviour follows these fluctuations. Some points in the dam are affected by negative pore water pressures. No abnormal situations have been detected pore water pressures.

Originality/value

The numerical results of the simulation are analysed and validated against actual pore pressure cell measurements under operating conditions.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 February 2014

Xue Xinhua, Zhang Wohua and Xingguo Yang

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like…

Abstract

Purpose

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like caves, pores and cracks, which are important characters of porous media and have a great influence on the physical properties of materials. To study the seepage mechanical characteristics of damaged porous media, the constitutive model of porous media dealing with coupled modeling of pores damage and its impact on permeability property of a deforming media was studied in this paper.

Design/methodology/approach

The paper opted for an exploratory study using the approach of continuum damage mechanics (CDM).

Findings

The paper provides some new insights on the fluid dynamics of porous media. The dynamic evolution model of permeability coefficient established in this paper can be used to model the fluid flow problems in damaged porous media. Moreover, the modified Darcy's law developed in this paper is considered to be an extension of the Darcy's law for fluid flow and seepage in a porous medium.

Research limitations/implications

Owing to the limitations of time, conditions, funds, etc., the research results should be subject to multifaceted experiments before their innovative significance can be fully verified.

Practical implications

The paper includes implications for the development of fluid dynamics of porous media.

Originality/value

This paper fulfils an identified need to study the relationship between the micro-structures of porous media and the coefficient of permeability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2004

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The…

2056

Abstract

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2002. At the end of this paper, 509 references are listed dealing with subjects such as, fundamental relations and modelling in indentation testing, identification of mechanical properties for specific materials, fracture mechanics problems in indentation, scaling relationship for indentation, indenter geometry and indentation testing.

Details

Engineering Computations, vol. 21 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 March 2019

Wei Zhang, Peitong Cong, Kang Bian, Wei-Hai Yuan and Xichun Jia

Understanding the fluid flow through rock masses, which commonly consist of rock matrix and fractures, is a fundamental issue in many application areas of rock engineering. As the…

Abstract

Purpose

Understanding the fluid flow through rock masses, which commonly consist of rock matrix and fractures, is a fundamental issue in many application areas of rock engineering. As the equivalent porous medium approach is the dominant approach for engineering applications, it is of great significance to estimate the equivalent permeability tensor of rock masses. This study aims to develop a novel numerical approach to estimate the equivalent permeability tensor for fractured porous rock masses.

Design/methodology/approach

The radial point interpolation method (RPIM) and finite element method (FEM) are coupled to simulate the seepage flow in fractured porous rock masses. The rock matrix is modeled by the RPIM, and the fractures are modeled explicitly by the FEM. A procedure for numerical experiments is then designed to determinate the equivalent permeability tensor directly on the basis of Darcy’s law.

Findings

The coupled RPIM-FEM method is a reliable numerical method to analyze the seepage flow in fractured porous rock masses, which can consider simultaneously the influences of fractures and rock matrix. As the meshes of rock matrix and fracture network are generated separately without considering the topology relationship between them, the mesh generation process can be greatly facilitated. Using the proposed procedure for numerical experiments, which is designed directly on the basis of Darcy’s law, the representative elementary volume and equivalent permeability tensor of fractured porous rock masses can be identified conveniently.

Originality/value

A novel numerical approach to estimate the equivalent permeability tensor for fractured porous rock masses is proposed. In the approach, the RPIM and FEM are coupled to simulate the seepage flow in fractured porous rock masses, and then a numerical experiment procedure directly based on Darcy’s law is introduced to estimate the equivalent permeability tensor.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 July 2023

Chengfu Hu, Chong Shi, Yiping Zhang, Xiao Chen and Sha Luo

Cemented conglomerate accumulation is a weak and heterogeneous medium that occurs in western China. It consists mainly of argillaceous cement that loses strength rapidly upon…

Abstract

Purpose

Cemented conglomerate accumulation is a weak and heterogeneous medium that occurs in western China. It consists mainly of argillaceous cement that loses strength rapidly upon contact with water, leading to collapse instability failure. Its deformation failure mechanism is complex and poorly understood. In this paper, the erosion failure mechanism of cemented conglomerate accumulation is investigated.

Design/methodology/approach

The collapse failure process after erosion of the slope foot for typical cemented conglomerate accumulation is studied based on field investigation using the particle discrete element method. And how the medium composition, slope angle and cementation degree influence the failure mode and process of the cemented conglomerate accumulation is examined.

Findings

The foot erosion of slope induces a tensile failure that typically manifests as “erosion at the foot of slope – tensile cracking at the back edge of slope top – integral collapse.” The collapse failure is more likely to occur when the cemented conglomerate accumulation has a higher rock content, a steeper slope angle or a weaker cementation degree.

Originality/value

A model based on rigid blocks and disk particles to simulate the cemented conglomerate accumulation is developed. It shows that the hydraulic erosion at the foot of the slope resulted in a different failure mechanism than that of general slopes. The results can inform the stability management, disaster prevention and mitigation of similar slopes.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2019

Liang Li, Xuesong Chu and Guangming Yu

The paper aims to construct a method to simulate the relationship between the parameters of soil properties and the area of sliding mass of the true slip surface of a landslide.

Abstract

Purpose

The paper aims to construct a method to simulate the relationship between the parameters of soil properties and the area of sliding mass of the true slip surface of a landslide.

Design/methodology/approach

The smoothed particle hydrodynamics (SPH) algorithm is used to calibrate a response surface function which is adopted to quantify the area of sliding mass of the true slip surface for each failure sample in Monte Carlo simulation. The proposed method is illustrated through a homogeneous and a heterogeneous cohesive soil slope.

Findings

The comparison of the results between the proposed method and the traditional method using the slip surface with minimum factor of safety (FSmin) to quantify the failure consequence has shown that the landslide risk tends to be attributed to a variety of risk sources, and that the use of a slip surface with FSmin to quantify the consequence of a landslide underestimates the landslide risk value. The difference of the risk value between the proposed method and the traditional method increases dramatically as the uncertainty of soil properties becomes significant.

Practical implications

A geotechnical engineer could use the proposed method to perform slope failure analysis.

Originality/value

The failure consequence of a landslide can be rationally predicted using the proposed method.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 October 2018

Yuanqiang Chen, H. Zheng, Wei Li and Shan Lin

The purpose of this paper is to propose a new three-node triangular element in the framework of the numerical manifold method (NMM), which is designated by Trig3-MLScns.

Abstract

Purpose

The purpose of this paper is to propose a new three-node triangular element in the framework of the numerical manifold method (NMM), which is designated by Trig3-MLScns.

Design/methodology/approach

The formulation uses the improved parametric shape functions of classical triangular elements (Trig3-0) to construct the partition of unity (PU) and the moving least square (MLS) interpolation method to construct the local approximation function.

Findings

Compared with the classical three-node element (Trig3-0), the Trig3-MLScns element has a higher order of approximations, much better accuracy and continuous nodal stress. Moreover, the linear dependence problem associated with many PU-based methods with high-order approximations is eliminated in the present element. A number of numerical examples indicate the high accuracy and robustness of the Trig3-MLScns element.

Originality/value

The proposed element inherits the individual merits of the NMM and the MLS.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 23