Search results

1 – 10 of 313
Article
Publication date: 13 January 2020

Yali Zhang, Xiaogang Zhang and Zhongmin Jin

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Abstract

Purpose

This study aims to investigate the contact behavior of nominal curved surfaces with random roughness.

Design/methodology/approach

A deterministic model was applied to investigate the contact behavior. Numerical calculations were conducted on Gaussian and fractal profiles under a range of loading conditions. The deformation behavior is characterized in terms of three regimes including the elastic, elastoplastic and plastic regimes.

Findings

A linear relationship was observed between the real contact areas and normal loads, which is mainly governed by the plastic deformation. Surface roughness changes contact behavior by influence the transition of deformation regimes. Rougher surfaces generally demonstrate higher saturated plastic ratios.

Originality/value

The contact behavior of nominally curved surfaces with random roughness is understood in terms of the evolution of real contact areas and plastic ratios.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0190.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 April 2023

Markus Polzer, Marcel Bartz, Benedict Rothammer, Edgar Schulz and Sandro Wartzack

The curved and tribologically highly stressed surfaces of bearing components pose a major challenge for steel alloys or tribological resistant coatings like tetrahedral amorphous…

Abstract

Purpose

The curved and tribologically highly stressed surfaces of bearing components pose a major challenge for steel alloys or tribological resistant coatings like tetrahedral amorphous carbon (ta-C) coatings which in particular have an increased risk of delamination due to the significantly increased residual stresses. A possibility to prevent coating failure is the use of dopants while maintaining or even increasing tribological properties. This study aims to compare the tribological behavior of several doped diamond-like-carbon coatings with an undoped ta-C coating under varying slip conditions and Hertzian pressure up to 1800 MPa.

Design/methodology/approach

For this purpose, the tribological behavior was studied using of a ball-on-disc tribometer and a two-disc test rig under mixed/boundary conditions. The tests were conducted with coated specimens against uncoated 100Cr6 steel. Additionally, the influence of lubrication additives was studied due to the use of two fully formulated PAO-based oils, one without and one with molybdenum containing additives. The friction was measured in situ, and the wear was analyzed trough laser scanning microscopy and tactile measurement.

Findings

It was shown that the use of doped ta-C coatings exhibited a tendency for a more favorable tribological behavior compared to undoped ta-C coatings, with no general dependence on the lubricants used. The use of the most suitable coatings reduced the wear of the steel counter-body considerably.

Originality/value

To the best of the authors’ knowledge, this is the first approach of testing the tribological behavior of these doped ta-C coatings, developed for friction efficiency, in dependency on lubrication additives under the given load collective. The approach is relevant to determine whether the friction reduction and the wear inhibition of these coatings are suitable for higher contact pressures and load cycles.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0336/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2019

Peter Wriggers and Wilhelm T. Rust

This paper aims to describe the application of the virtual element method (VEM) to contact problems between elastic bodies.

Abstract

Purpose

This paper aims to describe the application of the virtual element method (VEM) to contact problems between elastic bodies.

Design/methodology/approach

Polygonal elements with arbitrary shape allow a stable node-to-node contact enforcement. By adaptively adjusting the polygonal mesh, this methodology is extended to problems undergoing large frictional sliding.

Findings

The virtual element is well suited for large deformation contact problems. The issue of element stability for this specific application is discussed, and the capability of the method is demonstrated by means of numerical examples.

Originality/value

This work is completely new as this is the first time, as per the authors’ knowledge, the VEM is applied to large deformation contact.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2021

Jiang Zhao, Zhengminqing Li, Hong Zhang and Rupeng Zhu

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear…

429

Abstract

Purpose

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear lubrication, and to more accurately predict the lubrication characteristics of different surfaces.

Design/methodology/approach

The method used in this paper is developed on the basis of the deterministic solution of the three-dimensional (3D) mixed elasto-hydrodynamic lubrication (EHL) model and the model parameters are corrected by friction test. The film pressure, film thickness and friction coefficient of different micro-textured tooth surfaces are predicted on the basis of accurate 3D mixed EHL models.

Findings

The results demonstrate that the micro-texture structure of the tooth surface can increase the local film thickness and enhance the lubricating performance of the tooth surface without drastically reducing the contact fatigue life. The stress distribution and friction characteristics of the tooth surface can be optimized by adjusting the micro-texture arrangement and the size of the micro-textures.

Originality/value

A new evaluation method using a 3D hybrid EHL model and friction test to predict the lubrication characteristics of LST is proposed, which can effectively improve the processing economy and save time.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2020-0423

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 September 2016

Jian Yang and Hejuan Chen

This paper aims to investigate the response behavior of the surface acoustic wave (SAW) sensor under the loading of micro-particles and to evaluate the feasibility of using the…

Abstract

Purpose

This paper aims to investigate the response behavior of the surface acoustic wave (SAW) sensor under the loading of micro-particles and to evaluate the feasibility of using the SAW sensor to study the micro-contact of the particle–plane interface.

Design/methodology/approach

An analytical perturbation theory of the coupled system of particle and SAW is presented. It shows that in the weak-coupling regime, the SAW sensor detects the coupling stiffness rather than the additional mass of the particle at the interface. The frequency perturbation formula expressed in parameters of the geometry and mechanical properties of the contact is further derived. The frequency shift of a 262-MHz Rayleigh-type SAW in the oscillation configuration under the loading of multiple starch particles of different sizes has been measured.

Findings

The experiment results of a linear relationship between the frequency increase and the sum of the radius of particles to the power of 2/3 verified the validity of the theory of linking the SAW response to the geometry and mechanical properties of the contact.

Originality/value

The SAW sensor could serve as a new candidate for studying the details of mechanical properties of the micro-contact of the interface.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 May 2020

Crislaine da Cruz, Ivan Mathias, Mariza Veiga Senk, Gelson Biscaia de Souza and Francisco Carlos Serbena

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural…

Abstract

Purpose

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural teeth. This study aims to investigate the tribological features of LS2 GC with crystalline volume fraction of 64% and different crystal sizes from 8 µm to 34 µm for different counterparts.

Design/methodology/approach

The tribological behavior was investigated using a pin-on-disc tribometer with alumina and tungsten carbide (WC) spheres, applied load of 5 N and sliding speed of 5 cm/s at normal conditions. The coefficient of friction was measured continuously up to 10,000 sliding cycles. The specific wear rate was calculated from tribological and profile measurements. The wear mechanism was investigated by surface morphology analysis.

Findings

The coefficient of friction during running-in varied from 0.8 to 1.0 for the alumina counterpart, because of severe wear. Afterwards, it reduced and reached a stationary regime, characterized by a mild wear regime and the formation of a tribolayer formed by the debris. For the WC counterpart, the coefficient of friction curves increased initially with sliding cycles up to a stationary regime. The samples tested against WC presented the lowest specific wear rate (k), and no variation of wear rate with crystal size was observed. For samples tested against the alumina, crystallization and crystal size increased the wear resistance.

Originality/value

This study evaluated the effect of different counterfaces on the tribological properties of the LS2 GC, an important glass-ceramic base for many dental prosthetics and dental restorations, discussing results in light of the contact mechanics. Different specific wear rates, wear regimes and dependence on the glass-ceramic microstructure were observed depending on the counterpart.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0352/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

Shanhua Qian

This paper aims to present the probable factors resulting in the lubrication failure in detail, based on the experimental study on the tribological property of the low-viscosity…

Abstract

Purpose

This paper aims to present the probable factors resulting in the lubrication failure in detail, based on the experimental study on the tribological property of the low-viscosity lubricant subjected to the different slide/roll ratios and loads under micro confined space.

Design/methodology/approach

The interference images and the traction coefficients of the spindle oil with low viscosity were recorded using a ball-on-disc test rig. Moreover, the corresponding flash temperatures were obtained via an analytical method.

Findings

More scratches can be observed in the interference images with higher slide/roll ratios. The applied load plays a significant role in the variation of the traction coefficient under different slide/roll ratio, and higher load resulted in lower traction coefficient. The flash temperature generated in the point contact zone non-linearly increases with increasing slide/roll ratio.

Originality/value

The flash temperature is not a crucial factor which results in these scratches in the interference images. Moreover, it is probable that the micro confined space is in boundary lubrication at higher shear rates.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 November 2023

Yayun Qi, Ruian Wang, Xiaolu Cui, Hutang Sang and Wenhui Mao

With the increased speed and mileage of high-speed lines, the problem of rail wear is increasing. In actual operation, a large number of abnormal wear phenomena occur on both…

Abstract

Purpose

With the increased speed and mileage of high-speed lines, the problem of rail wear is increasing. In actual operation, a large number of abnormal wear phenomena occur on both vehicles and rails during fixed line operation; therefore, the purpose of the study is to explored the rail wear for a variety of vehicles running in mixed operation.

Design/methodology/approach

This paper used the universal mechanism multibody dynamics software to establish the CRH2 high speed train (HST) and the CRH3 HST vehicle dynamic models, respectively. The mixed running of HSTs on the effect of rail wear evolution law was analyzed. The rail wear of the two vehicles with different curve radii, different wheel diameters and different under-rail stiffness was compared and analyzed.

Findings

The result showed that the rail wear of CRH3 HST is greater than that of CRH2 HST. The rail wear in the tangent track under mixed operation conditions is 25.4% less than when CRH3 HST operated independently. When there is a 1-mm wheel diameter difference, the maximum rail wear of CRH2 HST and CRH3 HST increases by 263% and 44%, respectively. The amount of rail wear is proportional to the under-rail stiffness, and the position of the maximum wear is almost unchanged.

Originality/value

Most studies on the evolution law of rail wear are conducted for a single vehicle type and a single line. This study explored the mixed running of HSTs on the effect of rail wear evolution law.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0276/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Dong Guan, Harry H. Hilton, Zhengwei Yang, Li Jing and Kuan Lu

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

Abstract

Purpose

This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.

Design/methodology/approach

A ball-on-plane configuration is adopted to represent the contact model between spherical piston and cylinder cover. The governing equations, which include the Reynolds and elasticity equations, are solved and validated by Jin–Dowson model. Both minimum film thickness and lambda ratio (ratio of minimum fluid film thickness to combined surface roughness of the piston and cylinder cover) of the equivalent model are obtained using an established model.

Findings

The results indicate that piston diameter and radial clearance are the two main factors affecting the pump lubrication regime. Other related parameters such as rotation speed of the piston, load, viscosity of working medium, material matching and surface roughness of piston and cylinder cover also have different impacts on the lubrication regime of the spherical pump.

Originality/value

These results emphasize the importance of the design and manufacturing parameters on the tribological performance of spherical pumps and these are also helpful in improving the spherical pump lubrication regime and enlarging its life cycle. This is to certify that to the best of the authors’ knowledge, the content of this manuscript is their own work. This manuscript has only been submitted to this journal and never been published elsewhere. The authors certify that the intellectual content of this manuscript is the product of their own work and that all the assistance received in preparing this manuscript and sources has been acknowledged.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 313