Search results

1 – 4 of 4
To view the access options for this content please click here
Article
Publication date: 25 September 2018

Kaushal Kumar, Satish Kumar, Munish Gupta and Hem Chander Garg

This paper aims at erosion wear experimentation conducted on two piping materials, namely SS202 and SS304 to establish the effect of rotational speed, concentration and…

Abstract

Purpose

This paper aims at erosion wear experimentation conducted on two piping materials, namely SS202 and SS304 to establish the effect of rotational speed, concentration and time period.

Design/methodology/approach

Erosion wear because of slurry flow is investigated using a slurry erosion pot tester. Fly ash is taken as erodent material having different solid concentrations lie in range 30 to 60per cent (by weight). Experiments are performed at four different speeds, i.e. 600; 900; 1,200; and 1,500 rpm for time duration of 90, 120, 150 and 180 min, respectively. To enhance erosion wear resistance of both piping materials, high-velocity-oxy-fuel coating technique is used to deposit WC-10Co4Cr coating. The parametric influence of erosion wear is optimized using Taguchi method.

Findings

The results show that significant improvement in erosion wear resistance is observed by deposition of WC-10Co4Cr coating. It is observed that rotational speed is found as highly influencing parameter followed by concentration and time duration. Parametric investigation of erosion wear is helpful to develop a procedure for minimizing the erosion wear in pipeline for the flow of solid-liquid mixture.

Originality/value

Slurry erosion wear of WC-10Co4Cr coated stainless steel (SS202 and SS304) is substantiated by extensive microstructural analysis and optimization technique.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 29 March 2019

Gitesh Kumar, Hem Chander Garg and Ajay Gijawara

This paper aims to report the friction and wear characteristics of refined soybean oil (RSBO) blended with copper oxide (CuO) nanoparticles and zinc dialkyldithiophosphate…

Abstract

Purpose

This paper aims to report the friction and wear characteristics of refined soybean oil (RSBO) blended with copper oxide (CuO) nanoparticles and zinc dialkyldithiophosphate (ZDDP) as additives.

Design/methodology/approach

Four different concentrations 0.04, 0.05, 0.1 and 0.2 Wt.% of CuO nanoparticles were added with ZDDP in RSBO. The friction and wear characteristics of lubricants have been investigated on a pin-on-disc tribotester under loads of 120 and 180 N, with rotating speeds of 1,200 and 1,500 rpm in half hour of operating time. The dispersion stability of CuO nanoparticles has been analyzed using ultraviolet visible (UV-Vis) spectroscopy. The wearout surface of pins has been examined by using a scanning electron microscope.

Findings

The results revealed that there is a reduction in the friction and wear by the addition of CuO nanoparticles and ZDDP in RSBO. Coefficient of friction increases at a high sliding speed for RSBO with ZDDP. From UV-Vis spectroscopy, it is observed that 100 ml of oleic acid surfactant per gram of CuO nanoparticles has stable dispersion in RSBO.

Originality/value

The addition of ZDDP and CuO nanoparticles in RSBO is more efficient to reduce the friction and wear in comparison to base oil. The optimum concentration of CuO nanoparticles in RSBO is 0.05 Wt.%.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 4 February 2014

Hem Chander Garg and Vijay Kumar

The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load…

Abstract

Purpose

The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides their relative simplicity in manufacturing. Most of the research work pertaining to non-recessed journal bearing assumes standard symmetric and asymmetric configurations. However, many more configurations are possible by changing the position of slot which may improve the performance of the slot-entry journal bearing. In the present work study of static performance characteristics of slot-entry journal bearing of different configuration has been carried out. The paper aims to discuss these issues.

Design/methodology/approach

FEM has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The performance characteristics of slot-entry hybrid journal bearings are computed by developing a computer program.

Findings

The simulated results of bearing characteristics parameters in terms of minimum fluid-film thickness and bearing flow have been presented for the wide range of various values of non-linearity factor and external load. It is found that there is an increase in the oil requirement for slot-entry hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the non-Newtonian behavior of the lubricant. The effect of the decrease in the viscosity of the lubricant due to non-Newtonian behavior of the lubricant diminishes the attitude angle. The computed performance characteristics are helpful for the bearing designer while choosing a particular configuration of bearing.

Research limitations/implications

The performance characteristics have been computed by considering the non-Newtonian lubricants. The thermal effects have been ignored in the analysis so as to obviate the mathematical complexity.

Originality/value

Get idea from already published manuscripts.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Case study
Publication date: 12 June 2015

Gaurav Shobhane, Bhaumik Jain, Gautam Anchalia and Ayush Agrawal

In December 2015, 196 countries will meet in Paris to reach a new global climate change agreement. This case looks at the climate negotiation process from the eyes of…

Abstract

In December 2015, 196 countries will meet in Paris to reach a new global climate change agreement. This case looks at the climate negotiation process from the eyes of India's environment minister Mr Prakash Javadekar. In India's context, the energy sector has a big role to play in emission reduction as it is the largest emitter of the GHGs. When compared to US and China, India's per-capita emissions are miniscule but they are expected to rise substantially as the GoI is investing heavily in the infrastructure sector which has a substantial carbon footprint. The case discusses the mandatory emission cuts that India will announce considering the fulfillment of sustainable development goals. The case also points out, the government's promise of providing 24*7 electricity by 2019 which it feels can be an impediment in setting an aggressive emission cut target. The case questions if changes in the portfolio mix can be a part of the solution.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

1 – 4 of 4