Search results

1 – 10 of 41
Article
Publication date: 30 January 2019

Jinliang Liu and Yanmin Jia

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction…

Abstract

Purpose

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction, and so forth. The purpose of this paper is to present a research on the temperature behaviours of high-latitude and low-altitude island permafrost under CFG pile composite foundation treatment.

Design/methodology/approach

In the process of CFG pile construction, the temperature of permafrost and pile body was monitored using the temperature sensors. The influence of subgrade height and atmospheric temperature cycle on permafrost temperature was analysed by finite element simulation.

Findings

In the process of CFG pile construction, the change curve of pile temperature and the temperature of permafrost beside pile following time can be divided into six stages, and the duration of these stages is at least one month. The temperature variation of permafrost while constructing subgrade in FEM has a good agreement with the results of field temperature monitoring. The height of subgrade not only affects the maximum temperature increase of permafrost and the re-frozen time of permafrost after the construction of CFG pile composite foundation, but also affects the temperature variation amplitude of permafrost during atmospheric temperature cycle.

Originality/value

The research will provide a reference for the design on the CFG pile composite foundation used for island permafrost and guarantee the stability of the structure; thus, it has an important significance.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 6 June 2023

Yunjia Wang and Qianli Zhang

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of

Abstract

Purpose

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.

Design/methodology/approach

The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling, on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.

Findings

The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling, which will trigger hydrothermal erosion in case of sufficient moisture inflows, leading to the thawing settlement or the cracking of the subgrade, etc. The heat output of soil will be hindered the most in case of July filling, in which case the sinking and the distortion of the freezing front is found to be the most severe, which the recovery of the permafrost temperature field, the slowest, constituting the most unfavorable working condition. The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface, the subgrade height, the subgrade width and the volumetric thermal capacity of filler, while decreases with the increase of the thermal conductivity of filler. Therefore, the filler chose for engineering project shall be of small volumetric thermal capacity, low initial temperature and high thermal conductivity whenever possible.

Originality/value

The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Article
Publication date: 13 February 2024

Ernest Orji Akudo, Godwin Okumagbe Aigbadon, Kizito O. Musa, Muawiya Baba Aminu, Nanfa Andrew Changde and Emmanuel K. Adekunle

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a…

Abstract

Purpose

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a geotechnical assessment of subgrade soils in affected areas.

Design/methodology/approach

The methods entailed field and laboratory methods and statistical analysis. Subgrade soil samples were retrieved from a depth of 1,000 mm beneath the failed portions using a hang auger. The soils were analyzed for natural moisture content (NMC), Atterberg limit (liquid limit, plastic limit and linear shrinkage), grain size distribution, compaction and California bearing ratio (CBR), respectively.

Findings

The results of the geotechnical tests ranged from NMC (12.5%–19.4%), sand (84%–98%), fines (2%–16%), LL (16.0%–32.2%), PL (17%–27.5%), LS (2.7%–6.4%), PI (2.5%–18.4%), maximum dry density (1756 kg/m2–1961 kg/m2), optimum moisture content (13.2%–20.2%), unsoaked CBR (15.5%–30.5%) and soaked CBR (8%–22%), respectively. Pearson’s correlation coefficient performed on the variables showed that some parameters exhibited a strong positive correlation with r2 > 0.5.

Research limitations/implications

Funding was the main limitation.

Originality/value

Comparing the results with Nigerian standards for road construction, and the AASHTO classification scheme, the subgrade soils are competent and possess excellent to good properties. The soils also exhibited very low plasticity, a high percentage of sand, high CBR and low NMC, which implies that it has the strength required for road pavement subgrades. The likely causes of the failures are, therefore, due to the use of poor construction materials, technical incompetence and poor compaction of sub-base materials, respectively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 8 August 2022

Louis Le Pen and William Powrie

The railway track system is the platform by which loads from moving trains are transferred to the underlying soil or supporting infrastructure such as bridges. The most common

Abstract

The railway track system is the platform by which loads from moving trains are transferred to the underlying soil or supporting infrastructure such as bridges. The most common type of railway track system is ballasted track, which has been in use for over a century. Ballasted track has proved versatile. It can be constructed using locally available materials and with modifications to the rails and sleepers, crossings transferring trains from one route to another can be created. The structure of a ballasted track system consists of two main parts. The upper portion, termed the superstructure, comprises the rails, fastenings and sleepers. It is formed of components whose shape, stiffness and strength are designed and closely controlled. Below the superstructure is the substructure, which comprises the ballast and sub-ballast. Although the materials used in the substructure may have been specified, their engineering properties and geometric placement are less well controlled. In this chapter, we will explore how a typical ballasted track system transfers load to the ground and the ways in which the track form deteriorates, requiring maintenance and eventually renewal.

Details

Sustainable Railway Engineering and Operations
Type: Book
ISBN: 978-1-83909-589-4

Keywords

Book part
Publication date: 13 January 2010

Tony Kazda and Bob Caves

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-0-08-054643-8

Book part
Publication date: 5 August 2015

Tony Kazda and Bob Caves

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Open Access
Article
Publication date: 21 March 2023

Shilei Wang, Zhan Peng, Guixian Liu, Weile Qiang and Chi Zhang

In this paper, a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks, respectively, for a quantitative…

Abstract

Purpose

In this paper, a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks, respectively, for a quantitative evaluation of the condition of railway ballast bed.

Design/methodology/approach

Based on original radar signals, the time–frequency characteristics of radar signals were analyzed, five ballast bed condition characteristic indexes were proposed, including the frequency domain integral area, scanning area, number of intersections with the time axis, number of time-domain inflection points and amplitude envelope obtained by Hilbert transform, and the effectiveness and sensitivity of the indexes were analyzed.

Findings

The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm, which meets the requirements of ballast bed detection. Compared with clean ballast bed, the values of the five indexes of fouled ballast bed are larger, and the five indexes could effectively show the condition of the ballast bed. The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s·km−1, and the computational efficiency of other indexes is 5 s·km−1. The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive, followed by scanning area. The number of intersections with the time axis in the bridge sections was the most sensitive, followed by the scanning area. The scanning area can adapt to different substructures such as subgrade, bridges and tunnels, with high comprehensive sensitivity.

Originality/value

The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 2 January 2024

Xu Li, Zeyu Xiao, Zhenguo Zhao, Junfeng Sun and Shiyuan Liu

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve…

Abstract

Purpose

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve its drainage function, improve the water stability and service life of the roadbed pavement and promote the application of semi-rigid permeable base layer materials in the construction of asphalt pavement in cold regions.

Design/methodology/approach

In this study, three semi-rigid base course materials were designed, the mechanical strength and drainage properties were tested and the effect and correlation of air voids on their performance indexes were analyzed.

Findings

It was found that increasing the cement content increased the strength but reduced the air voids and water permeability coefficient. The permeability performance of the sandless material was superior to the dense; the performance of the two sandless materials was basically the same when the cement content was 7%. Overall, the skeleton void (sand-containing) type gradation between the sandless and dense types is more suitable as permeable semi-rigid base material; its gradation is relatively continuous, with cement content? 4.5%, strength? 1.5 MPa, water permeability coefficient? 0.8 cm/s and voids of 18–20%.

Originality/value

The study of permeable semi-rigid base material with large air voids could help to solve the problems of water damage and freeze-thaw damage of the base layer of asphalt pavements in cold regions and ensure the comfort and durability of asphalt pavements while having good economic and social benefits.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 December 2018

Haitao Wang, Jiayu Shen and Da Gao

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic…

Abstract

Purpose

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic damage mode of abutment in liquefied ground.

Design/methodology/approach

Based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software dynamic effective stress analysis for ground (UWLC) is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. Then, the influences of the horizontal binding force of the beam, the liquefaction layer thickness, the top weight of the abutment, the peak acceleration, the liquefaction layer buried depth and the type of the foundation soil on the abutment seismic damage model are studied.

Findings

The results show that numerical simulation results are consistent with the actual seismic damage, and it is feasible to use UWLC software to simulate seismic damage. The results show that the seismic failure mode of the gravity abutment in liquefied ground is slip–rotation coupling type, not single slip type or rotation type. The large deformation of abutment bottom layer, horizontal binding force of the beam and post-stage soil pressure are the main reasons for abutment rotation or even destruction.

Research limitations/implications

A series of basic assumptions are used in the calculation process in this paper. The gravity abutment is defined as the elastic body and neglects its local deformation. The soil layer is a homogeneous isotropic. The consolidation process and the drainage boundary problem are not considered in the calculation process. Therefore, the paper may have some limitations.

Originality/value

To further research the seismic damage mode and influencing factors of abutment in liquefied ground, in this paper, based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software UWLC is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. The seismic damage mode and influencing factors of gravity abutment in liquefied ground have been studied.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 41