Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 14 May 2019

Yuqiang Wang, Yuguang Wei, Hua Shi, Xinyu Liu, Liyuan Feng and Pan Shang

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Abstract

Purpose

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Design/methodology/approach

A 0-1 nonlinear integer programming model with the aim of minimizing the idling period between actual train arrival time and expected train arrival time for all loaded unit trains are proposed.

Findings

The proposed model is applied into a case study based on Daqin heavy haul railway. Results show that the proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Originality/value

The proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Details

Smart and Resilient Transportation, vol. 1 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 22 November 2022

Xinjun Zhou

Under the dual pressure of resources and environment, many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of…

Abstract

Purpose

Under the dual pressure of resources and environment, many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society. This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice, and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation's ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.

Design/methodology/approach

This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology, management and structural reconstruction to reduce energy consumption and carbon emissions. Among them, the effect of structural energy conservation and emission reduction has become more prominent. It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors. The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.

Findings

Key aspects in improving energy efficiency include re-optimization of energy structure, re-innovation of energy-saving technologies and optimization of transportation organization. Path selection includes continuing to promote electrified railway construction, increasing the use of new and renewable energy sources, and promoting the reform of railway transportation organizations.

Originality/value

This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies, approaches for practice in a Chinese context. To achieve the expected goals, relevant supporting policies and measures need to be formulated, including actively guiding integrated transportation toward railway-oriented development, promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives, focusing on improving the energy efficiency of railways through market behavior. At the same time, it is necessary to pay attention to new phenomena in the railway industry for track and analysis.

Abstract

Details

Delivering Victory
Type: Book
ISBN: 978-1-78754-603-5

Article
Publication date: 11 October 2021

Rashid Amiri Ara, Klara Paardenkooper and Ron van Duin

This paper aims to propose a new blockchain system design to improve engineering, procurement and construction (EPC) companies’ supply chain for constructing oil and gas…

1106

Abstract

Purpose

This paper aims to propose a new blockchain system design to improve engineering, procurement and construction (EPC) companies’ supply chain for constructing oil and gas infrastructure, by mitigating cost and time inefficiencies.

Design/methodology/approach

A case study analyses the supply chain of a sample EPC company. First, a literature review is conducted to explore the subject in academic literature. Second, information flows are mapped using responsible, accountable, consulted and informed analysis and cross-functional process mapping. Third, inefficiencies are identified. Fourth, the root causes of the inefficiencies are pinpointed using fishbone and five-times-why analysis. Fifth, a comparison is made between the linear and the blockchain information system via force-field analysis. Sixth, a specific blockchain system design is identified based on three external expert interviews. Finally, the new system is designed and a cost-benefit analysis is conducted.

Findings

Major cost and time inefficiencies in oil and gas infrastructure developments are caused by a poor information flow in the supply chain. The new blockchain system design is a feasible solution, reducing cost inefficiencies by 12.4% and operation lead-times by 36.5%.

Research limitations/implications

The confidentiality of the sample EPC company’s information represents a limitation.

Originality/value

The research introduces a new blockchain system design, reducing cost and time inefficiencies in the project-development supply chain, including implementation processes.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 March 2024

Hongkun Wang, Yongxiang Zhao, Yayun Qi and Yufeng Cao

The serious wear problem of heavy-haul freight vehicle wheels affects the safety and economy of vehicle operation. This paper aims to study wheel wear evolution law and the…

Abstract

Purpose

The serious wear problem of heavy-haul freight vehicle wheels affects the safety and economy of vehicle operation. This paper aims to study wheel wear evolution law and the influence of line parameters on wheel wear of heavy-haul freight, and provide the basis for operation and line maintenance.

Design/methodology/approach

The wheel wear test data of heavy-haul freight vehicles were analyzed. Then a heavy-haul freight vehicle dynamic model was established. The line parameters influencing wheel wear in heavy-haul freight vehicles were also analyzed by the Jendel wear model, and the effects of rail cant, rail gauge, rail profile and line ramp on wheel wear were analyzed.

Findings

A rail cant of 1:40 results in less wheel wear; an increase in the rail gauge can reduce wheel wear; and when matched with the CHN60 rail, the wear depth is relatively small. A decrease of 9.21% in wheel wear depth when matched with the CHN60 rail profile. The ramp of the heavy-haul line is necessary to consider for calculating wheel wear. When the ramp is considered, the wear depth increases by 8.47%. The larger the ramp, the greater the braking force and therefore, the greater of the wheel wear.

Originality/value

This paper first summarizes the wear characteristics of wheels in heavy-haul freight vehicles and then systematically analyzes the effect of line parameters on wheel wear. In particular, this study researched the effects of rail cant, rail gauge, rail profile and line ramp on wheel wear.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0038/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 23 November 2023

Xiaochen Ju

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types…

Abstract

Purpose

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types, manufacturing processes, materials and service conditions. It also focuses on prominent defects and challenges related to heavy transportation conditions, particularly low live haul reserves and severe fatigue problems.

Design/methodology/approach

The study encompasses three key aspects: (1) Adaptability assessment: It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses, experiments and engineering applications. (2) Strengthening: To combat frequent crack defects in the vertical stiffener end structure of girder webs, fatigue performance tests and reinforcement scheme experiments were conducted. These experiments included the development of a hot-spot stress S-N curve for this structure, validating the effectiveness of methods like crack stop holes, ultrasonic hammering and flange angle steel. (3) Service life extension: Research on the cruciform welded joint structure (non-fusion transfer type) focused on fatigue performance over the long life cycle. This led to the establishment of a fatigue S-N curve, enhancing Chinese design codes.

Findings

The research achieved several significant outcomes: (1) Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line. (2) Post-reinforcement, a substantial 26% to 32% reduction in live haul stress on bridge members was achieved. (3) The strengthening and retrofitting efforts met design expectations, enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.

Originality/value

This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges, providing valuable insights into adaptability assessment, strengthening techniques and service life extension methods. Furthermore, the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 10 November 2023

Chongyi Chang, Gang Guo, Wen He and Zhendong Liu

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and…

Abstract

Purpose

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and operation, thereby enhancing safety, operational efficiency and track system design.

Design/methodology/approach

A longitudinal dynamics simulation model of the super long heavy haul train was established and verified by the braking test data of 30,000 t heavy-haul combination train on the long and steep down grade of Daqing Line. The simulation model was used to analyze the influence of factors on the longitudinal force of super long heavy haul train.

Findings

Under normal conditions, the formation length of extreme-long heavy-haul combined train has a small effect on the maximum longitudinal coupler force under full service braking and emergency braking on the straight line. The slope difference of the long and steep down grade has a great impact on the maximum longitudinal coupler force of the extreme-long heavy-haul trains. Under the condition that the longitudinal force does not exceed the safety limit of 2,250 kN under full service braking at the speed of 60 km/h the maximum allowable slope difference of long and steep down grade for 40,000 t super long heavy-haul combined trains is 13‰, and that of 100,000 t is only 5‰.

Originality/value

The results will provide important theoretical basis and practical guidance for further improving the transportation efficiency and safety of extreme-long heavy-haul trains.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 6 June 2023

Philipp Geiberger, Zhendong Liu, Mats Berg and Christoph Domay

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed…

Abstract

Purpose

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed and position. Since there is a strong demand for improving energy efficiency in Sweden, data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.

Design/methodology/approach

To monitor energy efficiency, the present study, therefore, develops key performance indicators (KPIs), which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation. Energy meter data of IORE class locomotives, hauling highly uniform 30-tonne axle load trains with 68 wagons, together with additional data sources, are analysed to identify significant parameters for describing driver influence on energy usage.

Findings

Results show that driver behaviour varies significantly and has the single largest influence on energy usage. Furthermore, parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions, e.g., axle loads and number of wagons, on energy usage.

Originality/value

Based on the parametric studies, some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived. In the end, some possible measures for improving energy performance in heavy-haul operations are given.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 30 November 2020

Yaqin Zhang, Mingming Wang, Ruimin Wang, Zhipeng Li and Nan Zhang

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

5043

Abstract

Purpose

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

Design/methodology/approach

Hence, an integer linear programming model for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The proposed model based on the alternative graph at the microscopic level depicts the freight train movements in detail. Multiple dispatching measures such as re-timing and re-ordering are taken into account. Moreover, two objective functions, namely, the total final delays and the consecutive delays, are minimized in the freight trains dispatching problem.

Findings

Finally, a real-world computational experiment based on the Haolebaoji-Ji’an freight heavy-haul railway is implemented. The results of all disrupted cases are obtained within 10 s. The results give insight into that the consecutive delays are more than the total final delays when the same disrupted situation and the consecutive or total final delays increase as the primary delays increase.

Originality/value

An integer linear programming model based on the alternative graph for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The method can be developed as the computer-aided tool for freight train dispatchers.

Details

Smart and Resilient Transportation, vol. 2 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 8 June 2012

Size Li, Zhangdui Zhong, Ruisi He and Bo Ai

The purpose of this paper is to attempt to apply the theory of grey clustering evaluations in coal railway transportation on the “Datong‐Qinhuangdao” heavy haul railway line, to…

Abstract

Purpose

The purpose of this paper is to attempt to apply the theory of grey clustering evaluations in coal railway transportation on the “Datong‐Qinhuangdao” heavy haul railway line, to provide a reliable selection plan for heavy haul railway transportation.

Design/methodology/approach

Grey clustering evaluations are important contents of grey system. Starting from the investigation on the evaluations in coal railway transportation on the “Datong‐Qinhuangdao” line, the authors realize that the reasonable plan developed from the real equipment and wagon flow conditions for optimal organizing of trains to achieve minimum unloading time is becoming the goal of the organizing optimization. According to the theory of grey clustering evaluations, all the system parameters such as, transportation volume per year and cost of transportation, can be combined with each other through some methods. This allows the authors to apply the theory of grey clustering evaluations on the “Datong‐Qinhuangdao” heavy haul railway line, and provide a reliable selection plan for heavy haul railway transportation. The results of the statistical analysis can be used as the basic theory to serve the coal railway transportation, and are applicable to provide reliable transportation.

Findings

This paper presents the theory of grey clustering evaluations in coal railway transportation on “Datong‐Qinhuangdao” heavy haul railway line. The convincing results of the grey classes are reported, and can be used as the basic theory to provide reliable transportation.

Practical implications

The method exposed in the paper can be used at each company's level for providing a reliable selection plan for heavy haul railway transportation. The results can also be used as the basic theory to provide reliable transportation.

Originality/value

The paper succeeds in providing a reliable selection plan for heavy haul railway transportation by using one of the newest developed theories: grey systems theory.

Details

Kybernetes, vol. 41 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 1000