Search results

1 – 10 of over 13000
Article
Publication date: 3 August 2015

Alexandre Lamoureux and Bantwal R. (Rabi) Baliga

The purpose of this paper is to first present the key features of hybrid numerical methods that enable cost-effective simulations of complex thermofluid systems, and then…

1967

Abstract

Purpose

The purpose of this paper is to first present the key features of hybrid numerical methods that enable cost-effective simulations of complex thermofluid systems, and then demonstrate the formulation and application of such a method.

Design/methodology/approach

A hybrid numerical method is formulated for simulations of a closed-loop thermosyphon operating with slurries of a micro-encapsulated phase-change material suspended in distilled water. The slurries are modeled as homogeneous mixtures, with inputs of effective properties and overall heat-loss coefficients. Combinations of an axisymmetric two-dimensional (2D) control-volume finite-element method and a segmented-quasi-one-dimensional (1D) model are used to achieve cost-effective simulations. Proper matching of the solutions at the interfaces between adjacent axisymmetric 2D and quasi-1D zones is ensured by incorporating and heuristically determining suitable lengths of pre- and post-heating (and also pre- and post-cooling) sections.

Findings

In the demonstration problem, which would strictly require full three-dimensional simulations of the fluid flow and heat transfer phenomena, the proposed hybrid 1D/2D numerical method produces results that are in very good agreement with those obtained in a complementary experimental investigation.

Originality/value

The hybrid numerical methods discussed in this paper allow cost-effective computer simulations of complex thermofluid systems. These methods can therefore serve as very useful tools for the design, parametric studies, and optimization of such systems.

Article
Publication date: 3 April 2018

Najib Hdhiri and Brahim Ben Beya

The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for…

78

Abstract

Purpose

The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for homogeneous medium filled with different metal liquid. Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities, Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference. This was not the case in the convective regime (Gr = 105) where the effect of the third direction becomes important, where a 2D-3D difference was seen with about 37 per cent. Also, in most cases, the authors find that the heat absorption phenomena have the opposite effect with respect to the heat generation.

Design/methodology/approach

Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities.

Findings

Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321).

Originality/value

The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2020

S. Das, Asgar Ali and R.N. Jana

This paper aims to present the analytical investigation on an unsteady magneto-convective rotation of an electrically conducting non-Newtonian Casson hybrid nanoliquid past a…

Abstract

Purpose

This paper aims to present the analytical investigation on an unsteady magneto-convective rotation of an electrically conducting non-Newtonian Casson hybrid nanoliquid past a vertical porous plate. The effects of thermal radiation, heat source/sink and hydrodynamic slip phenomenon are also taken into account. Ethylene glycol (EG) is adopted as a base Casson fluid. The Casson fluid model is accounted for to describe the rheological characteristics of non-Newtonian fluid. EG with copper and alumina nanoparticles is envisaged as a non-Newtonian Casson hybrid nanoliquid. The copper-alumina-ethylene glycol hybrid nanoliquid is considered as the regenerative coolant.

Design/methodology/approach

The perturbation method is implemented to develop the analytical solution of the modeled equations. Acquired solutions are used to calculate the shear stresses and the rate of heat transfer in terms of amplitudes and phase angles. Numerical results are figured out and tabled to inspect the physical insights of various emerging parameters on the pertinent flow characteristics.

Findings

This exploration discloses that the velocity profiles are strongly diminished by the slip parameter. Centrifugal and Coriolis forces caused by the plate rotation are found to significantly change the entire flow regime. The supplementation of nanoparticles is to lessen the amplitude of the heat transfer rate. A comparative study is carried out to understand the improvement of heat transfer characteristics of Casson hybrid nanoliquid and Casson nanoliquid. However, the Casson hybrid nanoliquid exhibits a lower rate of heat transfer than the usual Casson nanoliquid.

Practical implications

This proposed model would be pertinent in oceanography, meteorology, atmospheric science, power engineering, power and propulsion generation, solar energy transformation, thermoelectric and sensing material processing, tumbler in polymer manufacturing, etc. Motivated by such practical implications, the proposed study has been unfolded.

Originality/value

The novelty of this paper is to examine the simultaneous effects of the magnetic field, Coriolis force, suction/injection, slip condition and thermal radiation on non-Newtonian Casson hybrid nanoliquid flow past an oscillating vertical plate subject to periodically heating in a rotating frame of reference. A numerical comparison is also made with the existing published results under some limiting cases and it is found that the results are in good agreement with them. An in-depth review of the literature and the author’s best understanding find that such aspects of the problem have so far remained unexplored.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 December 2020

Saima Batool, Muhammad Nawaz and Mohammed Kbiri Alaoui

This study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in…

Abstract

Purpose

This study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in conventional fluid. It has been found from the extensive literature survey that no study has been conducted to investigate buoyancy effects on the flow of Maxwell fluid comprised of hybrid microstructures and heat generation aspects through the non-Fourier heat flux model.

Design/methodology/approach

Non-Fourier heat flux model and non-Newtonian stress–strain rheology with momentum and thermal relaxation phenomena are used to model the transport of heat and momentum in viscoelastic fluid over convectively heated surface. The role of suspension of mono and hybrid nanostructures on an increase in the thermal efficiency of fluid is being used as a medium for transportation of heat energy. The governing mathematical problems with thermo-physical correlations are solved via shooting method.

Findings

It is noted from the simulations that rate of heat transfer is much faster in hybrid nanofluid as compare to simple nanofluid with the increasing heat-generation coefficient. Additionally, an increment in the thermal relaxation time leads to decrement in the reduced skin friction coefficient; however, strong behavior of Nusselt number is shown when thermal relaxation time becomes larger for hybrid nanofluid as well as simple nanofluid.

Originality/value

According to the literature survey, no investigation has been made on buoyancy effects of Maxwell fluid flow with hybrid microstructures and heat generation aspects through non-Fourier heat flux model. The authors confirm that this work is original, and it has neither been published elsewhere nor is it currently under consideration for publication elsewhere.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat

1246

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 September 2022

Feda Abdalla Zahor, Reema Jain, Ahmada Omar Ali and Verdiana Grace Masanja

The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition…

Abstract

Purpose

The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition, the influence of various parameters on the velocity profiles, temperature profiles and entropy generation was studied. Furthermore, the numerical methods used to solve the model equations were summarized. The underlying purpose was to understand the research gap and develop a research agenda.

Design/methodology/approach

This paper reviews 141 journal articles published between 2010 and 2022 on topics related to mathematical models used to assess the impacts of various parameters on the entropy generation, heat transfer and velocity of the MHD flow of nanofluids.

Findings

This review clarifies the application of entropy generation mathematical models, identifies areas for future research and provides necessary information for future research in the development of efficient thermodynamic systems. It is hoped that this review paper can provide a basis for further research on the irreversibility of nanofluids flowing through different channels in the development of efficient thermodynamic systems.

Originality/value

Entropy generation analysis and minimization constitute effective approaches for improving the performance of thermodynamic systems. A comprehensive review of the effects of various parameters on entropy generation was performed in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Daniele Piazzullo, Michela Costa, Luigi Allocca, Alessandro Montanaro and Vittorio Rocco

This paper aims to study the heat transfer phenomenon occurring between heated walls and impinging fuel, showing the strict relationship between cooling effect after impingement…

184

Abstract

Purpose

This paper aims to study the heat transfer phenomenon occurring between heated walls and impinging fuel, showing the strict relationship between cooling effect after impingement and enhancing of wallfilm formation. The study focuses on a fundamental task in terms of pollutant emissions in internal combustion engines, aiming at giving a major contribution to the optimization of energy conversion systems in terms of environmental impact.

Design/methodology/approach

The paper is based on experimental campaigns relevant at taking measurements of an impinging spray over a heated wall in a confined vessel. The results, in both qualitative and quantitative terms (measurements of liquid and vapour radial penetration and thickness), are numerically reproduced by a computational model based on a Reynolds Averaged Navier Stokes approach, properly validated through customized sub-models.

Findings

The paper provides quantitative results about the agreement between radial penetration and vapour thickness between measurements and simulation, achieved by taking into account the cooling effect determined by the fuel impingement. This validation of the numerical model allows the author to give more considerations about the link between wall temperature and wallfilm formation.

Originality/value

This paper presents an original approach for the simulation of wall heat transfer, by imposing a boundary condition at the wall that may consider the heat conduction and temperature cooling given by fuel impingement in both lateral and normal directions. The classical Dirichlet boundary condition, characterized by imposing a fixed temperature value, is, instead, replaced by an approach based on calculating the unsteady process that couples the heat fluxes between the fluid and the solid material and within the solid itself.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Muhammad Sohail, Rahila Naz and Rabeeah Raza

The purpose of this paper is to address the entropy analysis of the 3D flow of Maxwell nanofluid containing gyrotactic microorganism in the presence of homogeneous–heterogeneous…

Abstract

Purpose

The purpose of this paper is to address the entropy analysis of the 3D flow of Maxwell nanofluid containing gyrotactic microorganism in the presence of homogeneous–heterogeneous reactions with improved heat conduction and mass diffusion models over a stretched surface. Improved models are supported out by utilizing Cattaneo–Christov heat flux and generalized Fick’s law, respectively.

Design/methodology/approach

Governing equations which present the given flow phenomenon are modeled in the form of PDEs by applying boundary layer analysis and then suitable makeovers are engaged to transfigure prevailing partial differential equations into a set of ordinary differential equations. Transformed equations are handled via optimal homotopy analysis process in computational tool Mathematica and also a special case of already published work is substantiated and found to be in excellent settlement.

Findings

The bearing of innumerable convoluted physical parameters on velocity, temperature, concentration, reaction rate, the concentration of motile microorganism and entropy generation are presented and deliberated through graphs. Moreover, the convergence of the homotopic solution is presented in tabular form which confirms the reliability of the proposed scheme. It is perceived that mounting values of the magnetic parameter and Brinkman number boosts the irreversibility analysis and Bejan number diminishes for these parameters. Moreover, the growing values of Prandtl and Schmidt numbers reduce the temperature and concentration fields, respectively.

Practical implications

The work contained in this paper has applications in a different industry.

Originality/value

The work contained in this paper is original work and it is good for the researcher in the field of applied mathematics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 13000