Search results

1 – 10 of over 1000
Article
Publication date: 20 February 2023

Lin Zhu, Hua Liao and You Zhou

Promoting clean heating in rural areas is crucial for achieving a low-carbon transition of energy consumption and China's dual-carbon target. The study aims to consider the energy…

Abstract

Purpose

Promoting clean heating in rural areas is crucial for achieving a low-carbon transition of energy consumption and China's dual-carbon target. The study aims to consider the energy stacking behavior in heating energy use, reveals the determinants that affect household cleaner heating choices under the winter clean heating plan (WCHP), and proposes policy recommendations for the sustainable promotion of clean heating.

Design/methodology/approach

With unique rural household survey data covering the clean heating pilot regions in northern China in 2020, this study estimates the relationship between driving factors and heating energy choices through binary and multivariate probit models.

Findings

The regression estimates show that the main drivers of heating energy choices include household income per capita, education level of household head, knowledge of the WCHP, access to heating subsidies and perception of indoor air pollution. There is energy stacking behavior in rural household heating energy use. Household decisions to adopt electricity or clean coal heating are correlated with firewood or soft coal use.

Originality/value

This study is one of the few to investigate the heating energy use of rural households by allowing for the adoption of multiple energy types. Combined with a unique microsurvey dataset, it could provide rich information for formulating proper energy transition planning. The findings also shed light on the importance of heating subsidies, households' knowledge of WCHP and awareness of environmental health in choosing clean heating energy, which has not been fully valued in related research.

Details

China Agricultural Economic Review, vol. 15 no. 2
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 5 October 2023

Liang Ma and Jun Li

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of…

Abstract

Purpose

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.

Design/methodology/approach

This article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.

Findings

The rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.

Research limitations/implications

The effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.

Practical implications

The integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.

Originality/value

The present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 April 2023

Raluca Mariana Grosu

Within a Europe highly concerned about becoming a zero net greenhouse gas emission continent, and where the circular economy is strongly promoted as a proper lever in this sense…

Abstract

Purpose

Within a Europe highly concerned about becoming a zero net greenhouse gas emission continent, and where the circular economy is strongly promoted as a proper lever in this sense, the present paper aims to raise awareness regarding best practices towards a “green” food retail sector in Romania. In a more specific regard, the “green” practices implemented by the main food retailers acting on the Romanian market are analysed, focusing on what these practices are, how they are measured and how transparent they are.

Design/methodology/approach

The paper is based on desk research consisting in the identification and content analysis of the “green”-related information outlined on the food retailers' websites and in their published sustainability reports.

Findings

Food retailers are concerned about becoming carbon neutral, implementing the “green” measures outlined in the paper through the lenses of waste management, minimising/eradicating plastic, reducing/eliminating food waste, energy efficiency/saving, water consumption efficiency, protecting biodiversity, transportation efficiency and compliance with standards/obtained certifications/adherence to pacts. In addition to actions, food retailers are concerned about their proper, continuous monitorization, tackling key indicators in four directions: overall impact on the environment, impact on resources, waste impact and transportation impact.

Originality/value

The paper provides a novel, exhaustive best practices guide to encourage the transition to a “greener” activity in the Romanian food retail sector, highlighting both action measures and key assessment indicators.

Details

British Food Journal, vol. 126 no. 1
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 2 November 2023

Visar Hoxha, Hasan Dinçer and Serhat Yuksel

This study aims to investigate the strategic priorities of green building projects and analyze energy consumption alternatives in green residence projects using two innovative…

Abstract

Purpose

This study aims to investigate the strategic priorities of green building projects and analyze energy consumption alternatives in green residence projects using two innovative methods.

Design/methodology/approach

This study uses two methods, decision-making trial and evaluation laboratory (DEMATEL) to measure strategic priorities and golden-cut quantum spherical fuzzy technique for order preference by similarity to the ideal solution (TOPSIS) to analyze energy consumption alternatives.

Findings

The study reveals that sustainability and atmosphere are the most significant factors in determining the priorities of green residence projects, whereas innovation has a limited impact on addressing environmental challenges in the building sector. The ranking of energy use alternatives shows that sustainability issues and atmosphere quality of space heating and cooking are the top priorities, whereas other factors like white goods, water heating, lighting and space cooling are ranked lower.

Originality/value

This paper offers a significant contribution to the understanding of green buildings by introducing innovative methodological approaches. Theoretically, it uses the DEMATEL to enhance traditional analytical frameworks, marking a novel effort in understanding green residence projects. In addition, the golden-cut quantum spherical fuzzy TOPSIS method is introduced, offering a comprehensive decision-making framework for green projects, considering factors like energy consumption and economic feasibility. This combination of methodologies provides a holistic evaluation, emphasizing sustainability in green building construction. This study reveals untapped potential for environmental sustainability and energy efficiency, enriching the existing knowledge base.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 March 2024

João Eduardo Sampaio Brasil, Fabio Antonio Sartori Piran, Daniel Pacheco Lacerda, Maria Isabel Wolf Morandi, Debora Oliveira da Silva and Miguel Afonso Sellitto

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Abstract

Purpose

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Design/methodology/approach

The research method is a quantitative modeling. The main research techniques are data envelopment analysis, TOBIT regression and simulation supported by artificial neural networks. The model’s input and output variables consist of the average billet weight, number of billets processed in a batch, gas consumption, thermal efficiency, backlog and production yield within a specific period. The analysis spans 20 months.

Findings

The key findings include an average current efficiency of 81%, identification of influential variables (average billet weight, billet count and gas consumption) and simulated analysis. Among the simulated scenarios, the most promising achieved an average efficiency of 95% through increased equipment availability and billet size.

Practical implications

Additional favorable simulated scenarios entail the utilization of higher pre-reheating temperatures for cold billets, representing a large amount of savings in gas consumption and a reduction in CO2 emissions.

Originality/value

This study’s primary innovation lies in providing steelmaking practitioners with a systematic approach to evaluating and enhancing the efficiency of reheating processes.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 6 July 2023

K. Thirumalaisamy and A. Subramanyam Reddy

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…

Abstract

Purpose

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.

Design/methodology/approach

The cavity inclination angle is fixed ω = 0 in case (I) and ω=π4 in case (II). The traditional fluid is water, and Fe3O4+MWCNT+Cu/H2O is treated as a working fluid. Ternary nanofluid's thermophysical properties are considered, according to the Tiwari–Das model. The marker-and-cell numerical scheme is adopted to solve the transformed dimensionless mathematical model with associated initial–boundary conditions.

Findings

The average heat transfer rate is computed for four combinations of ternary nanofluids: Fe3O4(25%)+MWCNT(25%)+Cu(50%),Fe3O4(50%)+MWCNT(25%)+Cu(25%),Fe3O4(33.3%)+MWCNT(33.3%)+Cu(33.3%) and Fe3O4(25%)+MWCNT(50%)+Cu(25%) under the influence of various physical factors such as volume fraction of nanoparticles, inclined magnetic field, cavity inclination angle, porous medium, internal heat generation/absorption and thermal radiation. The transport phenomena within the square cavity are graphically displayed via streamlines, isotherms, local and average Nusselt number profiles with adequate physical interpretations.

Practical implications

The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.

Social implications

The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.

Originality/value

To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective Fe3O4+MWCNT+Cu/H2O ternary nanofluid flow and heat transmission filled in porous square cavities with an inclined cavity angle. The computational outcomes revealed that the average heat transfer depends not only on the nanoparticle’s volume concentration but also on the existence of heat source and sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2023

Su-Ling Fan, Wei-San Ong, Chun-Tin Wu, Nuria Forcada Matheu and Hamidreza Alavi

The purpose of this paper is to address the problems of the current facilities maintenance management (FMM) system in finding necessary information, identifying defective…

Abstract

Purpose

The purpose of this paper is to address the problems of the current facilities maintenance management (FMM) system in finding necessary information, identifying defective facilities and prioritizing maintenance work orders.

Design/methodology/approach

In this paper, in conjunction with building information modeling, a system is proposed to perform a preliminary inspection of each maintenance request, provide FMM staff with the location of the faulty facility and its associated details and provide recommendations for prioritizing repair work orders. Unity and Revit are used to implement the proposed system and a case study is conducted to demonstrate its effectiveness.

Findings

An augmented reality (AR)-FMM system was developed using the AR technique in this paper. This system provides the related information even if the FMM receives a problem report without facility information from the occupant and performs a preliminary inspection so that the faulty facility and the route to it are identified. In addition, a work order sequence of pending requests was provided. The visualization of the facility using AR technology has brought great convenience and ease to FMM staff.

Originality/value

This paper addresses the problems encountered in the current facility maintenance management system concerning AR technology.

Details

Facilities , vol. 41 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000