Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 21 August 2018

Jonas Hahn, Jens Hirsch and Sven Bienert

The purpose of this paper is to investigate the role of distinct types of heating technology and their price impact in German residential real estate markets, considering a wide…

1584

Abstract

Purpose

The purpose of this paper is to investigate the role of distinct types of heating technology and their price impact in German residential real estate markets, considering a wide range of other housing market determinants. The authors aim to test and to verify specifically, whether the obsolescence of heating technology leads to a significant price discount and whether higher technological standards (and environmental friendliness) come with a price premium on the market.

Design/methodology/approach

The authors create housing market models for rental and sales segments by constructing generalized additive models with explicit multi-layered spatial components. To elaborate a profound and contemporary answer using these models, the authors perform large-sample regression analyses based on more than 400,000 observations covering German residential properties in 2015.

Findings

First and foremost, the heating system indeed shows significant explanatory importance for measuring housing rents and purchasing price. Second, the authors find that it makes a difference whether clean “green” technologies are implemented or whether “brown” systems with obsolete technology or fossil energy sources is on hand. Ultimately, the authors conclude that while low energy consumption indeed comes with a price premium, this needs to be interpreted together with the property’s heating type, as housing markets seem to outweigh the “green premium” by “brown discounts” if low energy consumption figures are powered by a certain type of heating technology system.

Research limitations/implications

Aside of a possible omitted variable bias, the main research limitation is constituted by the integration of asking prices in the analysis, as actual transaction prices are not systematically transparent on national level in Germany. Limitations are discussed at the end of the paper.

Practical implications

This work supports investors who face the challenge of making environmental- and energy-related decisions as well as appraisers who deliver financial fundamentals for such. Third, the paper supports both asset managers as well as investment strategists in argumentation pro-environmental investments beyond all ecological necessity.

Social implications

This paper contributes to the current discussion on climate change and the eclectic role of real estate in this context. The authors deliver evidence on pricing effects as a measure of socioeconomic acceptance of progressive heating technology and environmental friendliness as an imperative of twenty-first century societies.

Originality/value

This is the first study on “green premiums” or “brown discounts” that includes heating technology as a potential and distinct driver of value and rents. It is a contemporary contribution and delivers original information on the quantitative impact of contemporary and anachronistic technology in heating to researchers as well as investors and appraisers.

Details

Property Management, vol. 36 no. 5
Type: Research Article
ISSN: 0263-7472

Keywords

Open Access
Article
Publication date: 11 July 2019

Matthew Li, David Allinson and Kevin Lomas

The purpose of this paper is to identify the impact of traditionally unmonitored energy sources and sinks on assessment of the as-built thermal performance of occupied homes. The…

2543

Abstract

Purpose

The purpose of this paper is to identify the impact of traditionally unmonitored energy sources and sinks on assessment of the as-built thermal performance of occupied homes. The analysis aims to demonstrate the potential scale of uncertainties introduced in a heat balance estimation of the heat transfer coefficient (HTC) when using in-use monitored data.

Design/methodology/approach

Energy flows for two UK homes – one a 1930s dwelling with high heat loss, the second a higher-performing 2014-built home – are predicted using the UK Government’s standard assessment procedure (SAP) and visualised using Sankey diagrams. Selected modelled energy flows are used as inputs in a quasi-steady state heat balance to calculate in-use HTCs as if from measured data sets gathered in occupied homes. The estimated in-use HTCs are compared against SAP-calculated values to illustrate the impact of including or omitting various heat sources and sinks.

Findings

The results demonstrate that for dwellings with low heat loss, the increased proportion of heating demand met by unmetered internal and solar gains informs a greater sensitivity of a heat balance estimation of the HTC to their omission. While simple quasi-steady state heat balance methods may be appropriate for dwellings with very high heat loss, alternative approaches are likely to be required for those with lower heat loss.

Originality/value

A need to understand the impacts of unmetered heat flows on the accuracy with which a building’s thermal performance may be inferred from in-use monitored data is identified: this paper illustrates the scale of these impacts for two homes at opposite ends of the energy performance scale.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 June 2021

C. Ahamed Saleel, Saad Ayed Alshahrani, Asif Afzal, Maughal Ahmed Ali Baig, Sarfaraz Kamangar and T.M. Yunus Khan

Joule heating effect is a pervasive phenomenon in electro-osmotic flow because of the applied electric field and fluid electrical resistivity across the microchannels. Its effect…

605

Abstract

Purpose

Joule heating effect is a pervasive phenomenon in electro-osmotic flow because of the applied electric field and fluid electrical resistivity across the microchannels. Its effect in electro-osmotic flow field is an important mechanism to control the flow inside the microchannels and it includes numerous applications.

Design/methodology/approach

This research article details the numerical investigation on alterations in the profile of stream wise velocity of simple Couette-electroosmotic flow and pressure driven electro-osmotic Couette flow by the dynamic viscosity variations happened due to the Joule heating effect throughout the dielectric fluid usually observed in various microfluidic devices.

Findings

The advantages of the Joule heating effect are not only to control the velocity in microchannels but also to act as an active method to enhance the mixing efficiency. The results of numerical investigations reveal that the thermal field due to Joule heating effect causes considerable variation of dynamic viscosity across the microchannel to initiate a shear flow when EDL (Electrical Double Layer) thickness is increased and is being varied across the channel.

Originality/value

This research work suggest how joule heating can be used as en effective mechanism for flow control in microfluidic devices.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 25 July 2019

Klaus Roppert, Florian Toth and Manfred Kaltenbacher

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet…

Abstract

Purpose

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet. Performing efficient numerical simulations of induction heating processes becomes ever more important because of faster production development cycles, where the quasi steady-state solution of the problem plays a pivotal role.

Design/methodology/approach

To avoid time-consuming transient simulations, the eddy current problem is transformed into frequency domain and a harmonic balancing scheme is used to take into account the nonlinear BH-curve. The thermal problem is solved in steady-state domain, which is carried out by including a convective term to model the stationary heat transport due to the sheet velocity.

Findings

The presented solution strategy is compared to a classical nonlinear transient reference solution of the eddy current problem and shows good convergence, even for a small number of considered harmonics.

Originality/value

Numerical simulations of induction heating processes are necessary to fully understand certain phenomena, e.g. local overheating of areas in thin structures. With the presented approach it is possible to perform large 3D simulations without excessive computational resources by exploiting certain properties of the multiharmonic solution of the eddy current problem. Together with the use of nonconforming interfaces, the overall computational complexity of the problem can be decreased significantly.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 24 July 2020

Valtteri Kaartemo, Suvi Nenonen and Charlotta Windahl

This study aims to identify institutional work mechanisms that public actors employ in market shaping.

2119

Abstract

Purpose

This study aims to identify institutional work mechanisms that public actors employ in market shaping.

Design/methodology/approach

The paper uses an abductive theorizing process, combining a literature review with an empirical exploration of three different market-shaping contexts.

Findings

The study identifies 20 granular mechanisms of institutional work that market-shaping public actors employ. These mechanisms are all potentially employable in creating, maintaining or disrupting markets. Institutional work vis-à-vis individual institutions may differ in direction from the institutional work vis-à-vis the market system. Public actors are not a homogeneous group but may have different values and support competing institutional logics even when operating in the same market.

Research limitations/implications

The empirical data were limited to three cases in three small open economies. Data collected from other markets and with other methods would provide more rigorous insight into market-shaping public actors.

Practical implications

The findings revealed institutional work mechanisms that public actors can use to shape markets. Companies wanting to engage public actors in market shaping should be aware of the values and institutional logics that influence market-shaping public actors.

Originality/value

The paper unites and expands on the scattered knowledge regarding institutional work in market shaping. It illuminates and dissects the role of public actors in market shaping, challenging the reactive stance that is often assigned to them. The study provides a better understanding of how conflicting market views affect markets. It also brings insights into the interplay between market-shaping actions and the multiple levels of market systems.

Details

Journal of Service Theory and Practice, vol. 30 no. 4/5
Type: Research Article
ISSN: 2055-6225

Keywords

Open Access
Article
Publication date: 3 October 2017

Tristan Gerrish, Kirti Ruikar, Malcolm Cook, Mark Johnson and Mark Phillip

The aim of this paper is to demonstrate the use of historical building performance data to identify potential issues with the build quality and operation of a building, as a means…

2760

Abstract

Purpose

The aim of this paper is to demonstrate the use of historical building performance data to identify potential issues with the build quality and operation of a building, as a means of narrowing the scope of in-depth further review.

Design/methodology/approach

The response of a room to the difference between internal and external temperatures is used to demonstrate patterns in thermal response across monitored rooms in a single building, to clearly show where rooms are under-performing in terms of their ability to retain heat during unconditioned hours. This procedure is applied to three buildings of different types, identifying the scope and limitation of this method and indicating areas of building performance deficiency.

Findings

The response of a single space to changing internal and external temperatures can be used to determine whether it responds differently to other monitored buildings. Spaces where thermal bridging and changes in use from design were encountered exhibit noticeably different responses.

Research limitations/implications

Application of this methodology is limited to buildings where temperature monitoring is undertaken both internally for a variety of spaces, and externally, and where knowledge of the uses of monitored spaces is available. Naturally ventilated buildings would be more suitable for analysis using this method.

Originality/value

This paper contributes to the understanding of building energy performance from a data-driven perspective, to the knowledge on the disparity between building design intent and reality, and to the use of basic commonly recorded performance metrics for analysis of potentially detrimental building performance issues.

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1423

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 December 2021

Roberto Felicetti

This study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation…

Abstract

Purpose

This study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation procedures, so to determine the residual safety margin and any need for repair works.

Design/methodology/approach

In this perspective, several tailored non-destructive test (NDT) methods have been developed in the past two decades, providing immediate results, with no need for time-consuming laboratory analyses. Moreover, matching their indications with the calculated effects of a tentative fire scenario allows harmonizing distinct pieces of evidence in the coherent physical framework of fire dynamics and heat transfer.

Findings

This approach was followed in the investigations on a concrete overpass in Verona (Italy) after a coach violently impacted one supporting pillar and caught fire in 2017. Technical specifications of the vehicle made it possible to bound the acceptable ranges for fire load and maximum rate of heat release, while surveillance video footage indicated the duration of the burning stage. Some established NDT methods (evaluation of discolouration, de-hydroxylation and rebar hardness) were implemented, together with advanced ultrasonic tests based on pulse refraction and pulse-echo tomography.

Originality/value

The results clearly showed the extension of the most damaged area at the intrados of the box girders and validated the maximum heating depth, as predicted by numerical analysis of the heat transient ensuing from the localized fire model.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 5 May 2020

Abdelkader Derbali, Shan Wu and Lamia Jamel

This paper aims to provide an important perspective to the predictive capacity of Organization of the Petroleum Exporting Countries (OPEC) meeting dates and production…

1336

Abstract

Purpose

This paper aims to provide an important perspective to the predictive capacity of Organization of the Petroleum Exporting Countries (OPEC) meeting dates and production announcements for energy futures (crude oil West Texas Intermediate (WTI), gasoline reformulated gasoline blendstock for oxygen blending (RBOB), Brent oil, London gas oil, natural gas and heating oil) market returns and volatilities.

Design/methodology/approach

To examine the impact of OPEC news on energy futures market returns and volatilities, the authors use a conditional quantile regression methodology during the period from April 01, 2013 to June 30, 2017.

Findings

From the empirical findings, the authors show a conditional dependence between energy futures returns and OPEC-based predictors; hence, the authors can find clear the significance of relationship in the process of financialization of the OPEC announcements and energy futures in the case of this paper. From the quantile-causality test, the authors find that the effect of OPEC news is important to energy futures. Specifically, OPEC announcements dates predict the quantiles of the conditional distribution of energy futures market returns.

Originality/value

The authors confirm the presence of unidirectional nexus between OPEC news and energy commodities futures in the long term.

Details

Journal of Economics, Finance and Administrative Science, vol. 25 no. 50
Type: Research Article
ISSN: 2077-1886

Keywords

1 – 10 of over 1000