Search results

1 – 10 of 183
Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama S.R. Gorla and Ali J. Chamkha

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in…

Abstract

Purpose

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in novel umbrella-shaped porous thermal systems. The system is top-cooled, and the identical heater surfaces are provided centrally at the bottom to identify the most enhanced configuration.

Design/methodology/approach

The thermal-fluid flow analysis is performed using a finite volume-based indigenous code, solving the nonlinear coupled transport equations with the Darcy number (10–5 ≤ Da ≤ 10–1), modified Rayleigh number (10 ≤ Ram ≤ 104) and Hartmann number (0 ≤ Ha ≤ 70) as the dimensionless operating parameters. The semi-implicit method for pressure linked equations algorithm is used to solve the discretized transport equations over staggered nonuniform meshes.

Findings

The study demonstrates that altering the heater surface geometry improves heat transfer by up to 224% compared with a flat surface configuration. The triangular-shaped heating surface is the most effective in enhancing both heat transfer and flow strength. In general, flow strength and heat transfer increase with rising Ram and decrease with increasing Da and Ha. The study also proposes a mathematical correlation to predict thermal characteristics by integrating all geometric and flow control variables.

Research limitations/implications

The present concept can be extended to further explore thermal performance with different curvature effects, orientations, boundary conditions, etc., numerically or experimentally.

Practical implications

The present geometry configurations can be applied in various engineering applications such as heat exchangers, crystallization, micro-electronic devices, energy storage systems, mixing processes, food processing and different biomedical systems (blood flow control, cancer treatment, medical equipment, targeted drug delivery, etc.).

Originality/value

This investigation contributes by exploring the effect of various geometric shapes of the heated bottom on the hydromagnetic convection of Cu–Al2O3–H2O hybrid nanofluid flow in a complex umbrella-shaped porous thermal system involving curved surfaces and multiphysical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 September 2022

Naveen Kumar Battula, Srinu Daravath and Ganesh Kumar Gampa

This paper deals with numerical studies into combined conduction, convection and radiation from a heated vertical electronic board are provided here.

Abstract

Purpose

This paper deals with numerical studies into combined conduction, convection and radiation from a heated vertical electronic board are provided here.

Design/methodology/approach

Here three inbuilt heaters with decrease in their heights were placed in the vertical electronic board. With respect to the non-heat portions, two configurations were studied. The first considers the non-heat portions to be adiabatic, while in the second, they are non-adiabatic. The heat that is produced in three heaters is conducted along the board and is dissipated either from the heater portions alone or from the whole board by convection and radiation. Air is considered as working medium, while the equations of heat transfer and flow of fluid are handled without boundary layer approximations. These equations were further solved using finite volume method with Gauss–Seidel iteration method.

Findings

Results of various comparative studies were discussed to bring out the relevance of thermal conductivity, modified Richardson number and surface emissivity on different heat transfer and flow results concerning this problem.

Originality/value

The optimum values of surface emissivity, thermal conductivity and modified Richardson number have also been notionally explored.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 November 2023

Samrat Hansda, Anirban Chattopadhyay and Swapan K. Pandit

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study…

Abstract

Purpose

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study is to comprehend the intricate phenomena of double diffusion by investigating the dispersion behavior of Al2O3, CuO, and Ag nanoparticles in water.

Design/methodology/approach

The cabinet design consists of two horizontal walls and two curved walls with the lower border divided into a heated and concentrated region of length b and the remaining sections are adiabatic. The vertical borders are cold and low concentration, while the upper border is adiabatic. Two cavity configurations such as convex and concave are considered. A uniform porous medium is taken within the ternary hybrid nanofluid. This has been characterized by the Brinkman-extended Darcy model. Thermosolutal phenomena are governed by the Navier-Stokes equations and are solved by adopting a higher-order compact scheme.

Findings

The present study focuses on exploring the influence of several well-defined parameters, including Rayleigh number, Darcy number, Lewis number, Buoyancy ratio number, nanoparticle volume concentration and heater size. The results indicate that the ternary hybrid nanofluid outperforms both the mono and hybrid nanofluids in all considered aspects.

Originality/value

This study brings forth a significant contribution by uncovering novel flow features that have previously remained unexplored. By addressing a well-defined problem, the work provides valuable insights into the enhancement of thermal transport, with direct implications for diverse engineering devices such as solar collectors, heat exchangers and microelectronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled…

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Darya Loenko, Hakan F. Öztop and Mikhail A. Sheremet

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking…

Abstract

Purpose

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking into account this challenge, this study aims to deal with computational investigation of thermogravitational energy transport of pseudoplastic nanoliquid in an electronic chamber with a periodic thermally producing unit placed on the bottom heat-conducting wall of finite thickness under an influence of isothermal cooling from vertical side walls.

Design/methodology/approach

The control equations formulated using the Boussinesq approach, Ostwald–de Waele power law and single-phase nanofluid model with experimentally based correlations of Guo et al. for nanofluid dynamic viscosity and Jang and Choi for nanofluid thermal conductivity have been worked out by the in-house computational procedure using the finite difference technique. The impact of the Rayleigh number, nanoadditives concentration, frequency of the periodic heat generation from the local element and thickness of the bottom solid substrate on nanoliquid circulation and energy transport has been studied.

Findings

It has been found that a raise of the nanoadditives concentration intensifies the cooling of the heat-generating element, while a growth of the heat-generation frequency allows reducing the amplitude of the heater temperature.

Originality/value

Mathematical modeling of a pseudoplastic nanomaterial thermogravitational energy transport in an electronic cabinet with a periodic thermally generating unit, a heat-conducting substrate and isothermal cooling vertical surfaces to identify the possibility of intensifying heat removal from a heated surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Case study
Publication date: 6 December 2023

Manoj Gour Chintaluri and Bala Subramanian R.

This case study exposes students to conflicts with distributors, escalated scenarios of a trade association and the possible repercussions of such a scenario. Upon completion of…

Abstract

Learning outcomes

This case study exposes students to conflicts with distributors, escalated scenarios of a trade association and the possible repercussions of such a scenario. Upon completion of this case study, the students will be able to understand the critical success factors for a distribution setup and alignment of channels for driving growth; understand and manage the power dynamics with a stakeholder, like trade associations, distribution reach, fallacies in managing the distributors and identifying the gaps; critically evaluate negotiation opportunities when a trade association is not directly related to the principal organization.

Case overview/synopsis

This case study showcased a conflict between the distributor and Universal Heater Industries (UHI), a leading player in the water heater business in India. In 2015, the global leadership of UHI identified India as an emerging market and undertook a complete management overhaul to implement a new growth plan. Several measures were put in place that leveraged the global product portfolio and new people were appointed to push the agenda. Manish Singhal, the national sales head of UHI, selected Kerala as the pilot state to implement the new plan. However, the projects failed, as the distributor escalated the treatment meted out by UHI to the Electrical Trade Association (ETA). Trade associations have had a history of playing truant with players like UHI, and because of this, business came to a complete halt. The UHI and ETA teams met once; however, the suggested closure by ETA needed to be aligned with UHI’s interests. Singhal’s dilemma deepened, and they had to decide the next steps.

Complexity academic level

This case study is suitable for a postgraduate marketing course in a segment on managing channels, intermediaries, distribution management and channel conflicts. The uniqueness of this case is in the dimension of the trade association and managing the stakeholders.

Supplementary material

Teaching notes are available for educators only.

Subject code

CSS8: Marketing.

Details

Emerald Emerging Markets Case Studies, vol. 13 no. 4
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 4 January 2024

Prabhjot Kaur, Rajveer Kaur Ritu and Amanpreet Kaur

The present study identifies the factors that impact behavioral intentions to adopt solar water heaters (SWHs) and examines their relationship with behavioral intentions using an…

Abstract

Purpose

The present study identifies the factors that impact behavioral intentions to adopt solar water heaters (SWHs) and examines their relationship with behavioral intentions using an extended “Unified Theory of Acceptance and Use of Technology” (UTAUT) model.

Design/methodology/approach

The study used a primary survey to collect data from 423 respondents across seven Indian states selected through purposive sampling. The collected data was analyzed using IBM SPSS software and “Structural Equation Modeling” (SEM) was performed using SmartPLS 3.5.5.

Findings

The results suggest that social influence is the most significant factor affecting SWH adoption, followed by effort, performance expectancy and facilitating conditions. The perceived cost negatively affects behavioral intentions and social influence on behavioral intentions is partially mediated by facilitating conditions. People prefer SWHs if they are easy to install and compatible with other home appliances. Positive perception of friends and family, easy access and government incentives contribute to SWH adoption.

Practical implications

SWH adoption can be promoted by designing sector-specific programs and improving ease of installation, operation, maintenance and after-sale services.

Originality/value

This study explores the behavioral intentions of individuals in India to adopt SWHs. India is a developing tropical country with a high potential for SWH adoption but has not received much attention. Further, the research integrates the perceived cost construct in the UTAUT model and examines the partial mediation impact of facilitating conditions to improve the model’s comprehensibility.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 183