Search results

1 – 10 of over 14000
Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2019

Yunchu Yang, Jiangrui Qian and Yang Chen

The purpose of this paper is to investigate the thermal transfer properties of electric heating fabric system which contains heating units or conductive yarns by numerical…

Abstract

Purpose

The purpose of this paper is to investigate the thermal transfer properties of electric heating fabric system which contains heating units or conductive yarns by numerical simulation, in order to optimize and evaluate the thermal performance of heating clothing.

Design/methodology/approach

Two kinds of FEM models are created by ANSYS system: macro-scale models of the fabrics system with heating units and air layer; and meso-scale models of the plain-woven fabrics were established embedded with the stainless yarns. In the macro-scale model, the interior and surface temperature field distribution were simulated and analyzed based on different heating unit size, heating power, heating region, air layer thickness and ambient temperature. For meso-scale models, the effects of the conductive yarns temperature, covering fabrics and pore-filling material on the temperature field distribution were simulated and analyzed.

Findings

With the increasing of the air layer thickness or the effective conductivity, the heat transfer along the direction of fabric thickness decreases gradually. The heat transfer along the fabric plane can be increased by dispersing the heating region. With the increasing of the conductive yarns’ temperature or the covering fabrics’ conductivity, the heat transfer distance along the fabric warp direction can be increased. Filling the internal pores of the fabric with 10 wt% SiC/TPU hybrid materials can effectively increase the in-plane heat transfer and improve the temperature uniformity on the surface of heated fabrics.

Originality/value

The finite element method was used to establish the simulation models of the heating fabric systems. The influence of several parameters on the thermal performance was analyzed and discussed, as well as the internal and external temperature distribution in the macro and micro scales models.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 April 2010

Fabian Krause, Sven Schüttenberg and Udo Fritsching

The purpose of this paper is to describe the development and application of a numerical model for analysis of flow boiling phenomena and heat transfer.

1533

Abstract

Purpose

The purpose of this paper is to describe the development and application of a numerical model for analysis of flow boiling phenomena and heat transfer.

Design/methodology/approach

For flow boiling processes, the fluid and vapour flow regimes in connection with the conjugate heat and mass transfer problem for specimen quenching through the entire boiling curve is modelled. Vaporisation and recondensation, the vapour fraction distribution and vapour movement with respect to the liquid are considered in the calculation of the two‐phase flow and heat transfer process. The derived flow boiling model is based on a mixture model and bubble crowding model approach for two‐phase flow. In addition to the conventional mixture model formulation, here special model implementations have been incorporated that describe: the vapour formation at the superheated solid‐liquid interface, the recondensation process of vapour at the subcooled vapour‐liquid interface, the mass transfer rate in the different boiling phases and the microconvection effect in the nucleate boiling phase resulting from bubble growth and detachment.

Findings

The model prediction results are compared with experimental data for quenching of a circular cylinder, showing good agreement in boiling state and heat transfer coefficient distribution. Simulation and experiments lead to a better understanding of the interaction of incident flow in the boiling state and the resulting heat transfer.

Research limitations/implications

Fluid temperatures in the range of 300‐353 K and specimen wall temperatures up to 1,000 K are considered.

Practical implications

Flow boiling is an efficient heat transfer process occurring in several technical applications. Application background of the model development is in quenching of complex metallic specimen geometries in liquids subject to fast changing heat fluxes.

Originality/value

A general model for the complex two‐phase boiling heat transfer at high wall temperatures and fast flow conditions that can be used in engineering applications does not yet exist. The results provide detailed information describing the non‐uniform phase change during the complete quenching process from film boiling to pure convection.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2013

Hong Wang, Georgi Djambazov and Koulis Pericleous

The purpose of this paper is to describe how a 3D/1D transient heat transfer model has been developed for getting accurate thermal boundary conditions when investigating the heat

Abstract

Purpose

The purpose of this paper is to describe how a 3D/1D transient heat transfer model has been developed for getting accurate thermal boundary conditions when investigating the heat transfer in the TiAl castings and also for reducing the computational cost and simplifying the mesh generation.

Design/methodology/approach

Heat transfer in the mould is assumed to take place only in a direction perpendicular to the mould wall, called 1D heat transfer. The coordinates of cell centre and the temperature in the mould wall can be calculated by the model instead of meshing mould. Heat transfer in the mould is computed via the FD solution of a 1D heat transfer equation.

Findings

For some types of geometry, the model works very well. However, for some, which contain the geometric feature called “dead corner”, the model can't cover. There is some impact on the accuracy of the model.

Practical implications

In the casting industry, the geometry of the casting is usually very complex and contains different features. This leads to difficult meshing when using numerical model to predict the casting process. Furthermore, an accurate calculation is very important on the thermal boundary during filling and solidification, to support practice, to improve the process and minimise the casting defects.

Originality/value

In this paper, a novel method is developed to calculate the heat transfer through the casting‐mould interface to the mould wall in a casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2019

Mohammad Fazli and Mehrdad Raisee

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k

Abstract

Purpose

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k-ε turbulence models in prediction of local heat transfer coefficient is evaluated.

Design/methodology/approach

Three low-Re number k-ε turbulence models (the zonal k-ε, the linear k-ε and the nonlinear k-ε) are used. Computations are performed for three geometries, namely, a channel with a single dimpled wall, a channel with double dimpled walls and a channel with a single dimple/protrusion wall. The predictions are obtained using an in house finite volume code.

Findings

The numerical predictions indicate that the nonlinear k-ε model predicts a larger recirculation bubble inside the dimple with stronger impingement and upwash flow than the zonal and linear k-ε models. The heat transfer results show that the zonal k-ε model returns weak thermal predictions in all test cases in comparison to other turbulence models. Use of the linear k-ε model leads to improvement in heat transfer predictions inside the dimples and their back rim. However, the most accurate thermal predictions are obtained via the nonlinear k-ε model. As expected, the replacement of the algebraic length-scale correction term with the differential version improves the heat transfer predictions of both linear and nonlinear k-ε models.

Originality/value

The most reliable turbulence model of the current study (i.e. nonlinear k-ε model) may be used for design and optimization of various thermal systems using dimples for heat transfer enhancement (e.g. heat exchangers and internal cooling system of gas turbine blades).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 November 2020

Miao Tian and Jun Li

The purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and…

Abstract

Purpose

The purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and clothing.

Design/methodology/approach

On account of interaction effects of fire and ventilation openings on heat transfer process, a 3D transient computational fluid dynamics model considering the real shape of human body and clothing was developed. The model was validated by comparing heat flux history and distribution with experimental results. Heat transfer modes and fluid flow were investigated under three levels of fire intensity for the microclimate with ventilation openings and closures.

Findings

Temperature distribution on skin surface with open microclimate was heavily depended on the heat transfer through ventilation openings. Higher temperature for the clothing with confined microclimate was affected by the position and direction of flames injection. The presence of openings contributed to the greater velocity at forearms, shanks and around neck, which enhanced the convective heat transfer within microclimate. Thermal radiation was the dominant heat transfer mode within the microclimate for garment with closures. On the contrary, convective heat transfer within microclimate for clothing with openings cannot be neglected.

Practical implications

The findings provided fundamental supports for the ease and pattern design of the improved thermal protective systems, so as to realize the optimal thermal insulation of the microclimate on the garment level in the future.

Originality/value

The outcomes broaden the insights of results obtained from the mesoscale models. Different high skin temperature distribution and heat transfer modes caused by thermal environment and clothing structure provide basis for advanced thermal protective clothing design.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2020

Alankrita Singh, Balaji Chakravarthy and BVSSS Prasad

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate…

Abstract

Purpose

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface.

Design/methodology/approach

The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, dp, Re, θ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model.

Findings

A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy.

Originality/value

The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2007

Jelka Geršak and Milan Marčič

To develop a mathematical model of the heat transfer from human body to environmental air that will be numerically solved by a personal computer.

1609

Abstract

Purpose

To develop a mathematical model of the heat transfer from human body to environmental air that will be numerically solved by a personal computer.

Design/methodology/approach

Development of the heat transfer model for the system man – clothing – environment is based on studying all forms of dry heat transfer (radiation, convection and conduction).

Findings

The advantage of the model for heat transfer is the ability of the fast evaluation of heat transfer for various textile materials incorporated into the clothing system under different ambient conditions.

Originality/value

Modelling the heat transfer is original and has an important contribution to thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 May 2009

Mehrdad Raisee and Arman Rokhzadi

The purpose of this paper is to investigate turbulent fluid flow and heat transfer through passages with an array of either detached or alternative attached‐detached ribs of…

Abstract

Purpose

The purpose of this paper is to investigate turbulent fluid flow and heat transfer through passages with an array of either detached or alternative attached‐detached ribs of square cross‐section.

Design/methodology/approach

The finite‐volume method in a partially staggered grid system has been applied. For the modeling of turbulence, the zonal as well as the linear and non‐linear low‐Reynolds number k  −  ε models have been employed.

Findings

The numerical results show that the presence of the ribs produces a very complex flow in the channel. The mean flow predictions for the channel with detached ribs show that the low‐Re k  −  ε models are able to reproduce most of the experimentally observed flow features away from the ribbed wall, but return lower stream‐wise velocities close to the wall. Additionally, all low‐Re k  −  ε models underpredict the stream‐wise turbulence intensity whilst producing correct cross‐stream turbulence intensity levels close to the measured data. All three turbulence models fail to completely reproduce the distribution of Nusselt number. Among three turbulence models examined in this work, the zonal k  −  ε model produces the best heat transfer predictions.

Originality/value

The work contributes in understanding of the flow and thermal development in passages with detached ribs. The present set of 2D and steady heat and fluid flow comparisons establishes a base‐level for more realistic three‐dimensional and unsteady computations. The results of this study may be of interest to engineers attempting to re‐design the internal cooling system of gas turbine blades and to researchers interested in the turbulent flow‐modification aspects of heat transfer enhancement of forced convection in ribbed passages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 14000