Search results

1 – 10 of over 12000
Content available
Article
Publication date: 25 January 2008

Jessica Mytum-Smithson

Abstract

Details

Sensor Review, vol. 28 no. 1
Type: Research Article
ISSN: 0260-2288

To view the access options for this content please click here
Article
Publication date: 1 December 1964

W.E. Pryor

One of the main factors contributing to the effectiveness of the Royal Air Force is the quality of its equipment. To be most efficient the equipment should have the…

Abstract

One of the main factors contributing to the effectiveness of the Royal Air Force is the quality of its equipment. To be most efficient the equipment should have the highest possible performance coupled with complete reliability. Any departure from this standard of reliability must be compensated for by economy in maintainability. The high and unacceptable failure rates experienced by the Royal Air Force are discussed as are the effects on aircraft availability, mission success and flight safety. Other serious aspects are the consumption of spares, their replacement and the financial costs involved. Some failure patterns in different aircraft environments are discussed and the cause and effects of failures are examined, together with the modifications which have taken place. The paper concludes with a statement on the reliability and maintainability requirement which the Royal Air Force must have if it is to provide the maximum national insurance with its weapon systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 12
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 30 January 2007

Abstract

Details

Sensor Review, vol. 27 no. 1
Type: Research Article
ISSN: 0260-2288

To view the access options for this content please click here

Abstract

Details

Marketing in Customer Technology Environments
Type: Book
ISBN: 978-1-83909-601-3

To view the access options for this content please click here
Article
Publication date: 1 May 2001

M.A.I. El‐Shaarawi and S.A. Haider

Conjugate laminar forced convection heat transfer in the entry region of eccentric annuli is numerically investigated. Heat transfer parameters are presented for a fluid…

Abstract

Conjugate laminar forced convection heat transfer in the entry region of eccentric annuli is numerically investigated. Heat transfer parameters are presented for a fluid of Pr = 0.7 flowing in an annulus of radius ratio 0.5 for four values of dimensionless eccentricity ranging from 0.1 to 0.7. Solid‐fluid conductivity ratio (KR) is varied to cover the range for practical cases with commonly encountered inner and outer tube thickness. Boundary conditions applied are isothermal heating of the inner surface of the core tube, while the outer surface of the external tube is maintained at the inlet fluid temperature. Limits for KR above which the conjugation can be neglected are obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 1 September 2001

Gareth Monkman

Discusses the various sensors that can be used to measure temperatures at the high and low extremes of industrial processes. These include: mechanical sensors such as…

Abstract

Discusses the various sensors that can be used to measure temperatures at the high and low extremes of industrial processes. These include: mechanical sensors such as bimetal and expanding liquid thermometers; electrical sensors including resistance, thermistors, thermocouples and semiconductor; and optical pyrometers. Also describes the error effects that can be experienced and how these can be overcome.

Details

Sensor Review, vol. 21 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 12 March 2018

Jiang Chen, Junli Zheng and Feng Xiong

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement…

Abstract

Purpose

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points. Improving the spatial resolution for a given number of measurement points is a prerequisite for popularizing this technology in the seepage monitoring of rockfill dams. The purpose of this paper is to address this problem.

Design/methodology/approach

This paper proposes a mobile-distributed seepage monitoring method based on the FBG-hydrothermal cycling seepage monitoring system. In this method, the positions of the measurement points are changed by freely dragging the FBG sensing cluster within the inner tube of a dual-tube structure, consisting of an inner polytetrafluoroethylene tube and outer polyethylene of raised temperature resistance heating tube.

Findings

A seepage velocity calibration test was carried out using the improved monitoring system. The results showed that under a constant seepage velocity, the use of the dual-tube structure enables faster cooling, and the cooling rate accelerates with an increase in the diameter of the inner tube. The use of the dual-tube structure can improve the sensitivity of the seepage evaluation index ζv to the seepage velocity. When the inner diameter increases, ζv becomes more sensitive to the seepage velocity.

Originality/value

A mobile-distributed seepage monitoring method based on FBG sensing technology is proposed in which the FBG sensors are not fixed. Instead, the positions of the measurement points are changed to improve the spatial resolution. Meanwhile, the use of the dual-tube structure in the presented monitoring system can improve its sensitivity.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 21 September 2015

Janusz Marek Smulko, Maciej Trawka, Claes Goran Granqvist, Radu Ionescu, Fatima Annanouch, Eduard Llobet and Laszlo Bela Kish

– This paper aims to present the methods of improving selectivity and sensitivity of resistance gas sensors.

Abstract

Purpose

This paper aims to present the methods of improving selectivity and sensitivity of resistance gas sensors.

Design/methodology/approach

This paper compares various methods of improving gas sensing by temperature modulation, UV irradiation or fluctuation-enhanced sensing. The authors analyze low-frequency resistance fluctuations in commercial Taguchi gas sensors and the recently developed tungsten trioxide (WO3) gas-sensing layers, exhibiting a photo-catalytic effect.

Findings

The efficiency of using low-frequency fluctuations to improve gas detection selectivity and sensitivity was confirmed by numerous experimental studies in commercial and prototype gas sensors.

Research limitations/implications

A more advanced measurement setup is required to record noise data but it will reduce the number of gas sensors necessary for identifying the investigated gas mixtures.

Practical implications

Fluctuation-enhanced sensing can reduce the energy consumption of gas detection systems and assures better detection results.

Originality/value

A thorough comparison of various gas sensing methods in resistance gas sensors is presented and supported by exemplary practical applications.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 23 December 2019

Lokesh Kulhari, Achu Chandran, Kanad Ray and P.K. Khanna

Low temperature co-fired ceramics (LTCC) technology-based micro-hotplates are of immense interest owing to their ruggedness, high temperature stability and reliability…

Abstract

Purpose

Low temperature co-fired ceramics (LTCC) technology-based micro-hotplates are of immense interest owing to their ruggedness, high temperature stability and reliability. The purpose of this paper is to study the role of thermal mass of LTCC-based micro-hotplates on the power consumption and temperature for gas-sensing applications.

Design/methodology/approach

The LTCC micro-hotplates with different thicknesses are designed and fabricated. The role of thermal mass on power consumption and temperature of these hotplates are simulated and experimentally studied. Also, a comparison study on the performance of LTCC and alumina-based hotplates of equivalent thickness is done. A thick film-sensing layer of tin oxide is coated on LTCC micro-hotplate and demonstrated for the sensing of commercial liquefied petroleum gas.

Findings

It is found from both simulation and experimental studies that the power consumption of LTCC hotplates was decreasing with the decrease in thermal mass to attain the same temperature. Also, the LTCC hotplates are less power-consuming than alumina-based one, owing to their superior thermal characteristics (low thermal conductivity, 3.3 W/ [m-K]).

Originality/value

This study will be beneficial for designing hotplates based on LTCC technology with low power consumption and better stability for gas-sensing applications.

Details

Microelectronics International, vol. 37 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

To view the access options for this content please click here
Article
Publication date: 18 January 2013

Victor V. Klemas

The purpose of this paper is to acquaint a wide audience of readers with some of the unique remote sensing and navigation capabilities of animals.

Abstract

Purpose

The purpose of this paper is to acquaint a wide audience of readers with some of the unique remote sensing and navigation capabilities of animals.

Design/methodology/approach

Biomimetic comparison of remote sensors evolved by animals and sensors designed by man. The study and comparison includes thermal infrared sensors used by snakes, echolocation used by bats and dolphins, and navigation methods used by birds. Countermeasures used by prey to avoid capture are also considered.

Findings

Some animals have remote sensing and navigation capabilities that are considerably more efficient than those provided by the human body or designed by man.

Practical implications

Sensor designers may be encouraged to use the biometic approach in the design of new sensors.

Social implications

The paper provides a better understanding of animal behaviour, especially their unique abilities to remotely sense, echolocate and navigate with high accuracy over considerable distances.

Originality/value

The paper presents a comparison of remote sensors used by animals with those developed by humans. Remote sensor designers can learn to improve their sensor designs by studying animal sensors within a biomimetic framework.

1 – 10 of over 12000