Search results

1 – 10 of over 17000
Article
Publication date: 28 October 2014

George Pichurov, Radostina Angelova, Iskra Simova, Iosu Rodrigo and Peter Stankov

The purpose of this paper is to integrate a thermophysiological human body model into a CFD simulation to predict the dry and latent body heat loss, the clothing, skin and core…

Abstract

Purpose

The purpose of this paper is to integrate a thermophysiological human body model into a CFD simulation to predict the dry and latent body heat loss, the clothing, skin and core temperature, skin wettedness and periphery blood flow distribution. The integration of the model allows to generate more realistic boundary conditions for the CFD simulation and allows to predict the room distribution of temperature and humidity originating from the occupants.

Design/methodology/approach

A two-dimensional thermophysiological body model is integrated into a CFD simulation to predict the interaction between the human body and room environment. Parameters varied were clothing insulation and metabolic activity and supply air temperature. The body dry and latent heat loss, skin wettedness, skin and core temperatures were predicted together with the room air temperature and humidity.

Findings

Clothing and metabolic activity were found to have different level of impact on the dry and latent heat loss. Heat loss was more strongly affected by changes in the metabolic rate than in the clothing insulation. Latent heat loss was found to exhibit much larger variations compared to dry heat loss due to the high latent heat potential of water.

Originality/value

Unlike similar studies featuring naked human body, clothing characteristics like sensible resistance and vapor permeability were accommodated into the present study. A method to ensure numerical stability of the integrated simulation was developed and implemented to produce robust and reliable simulation performance.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 October 2022

R.S. Ransing

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent…

Abstract

Purpose

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent “free” energy but is a measure of loss of Carnot (reversible) work opportunity.

Design/methodology/approach

The entropy of mass is described as the net temperature-standardised heat transfer to mass under ideal conditions measured from a datum value. An expression for the “irreversibility” is derived in terms of work loss (Wloss) in a work transfer process, unaccounted heat dissipation (Qloss) in a heat transfer process and loss of net Carnot work (CWnet) opportunity resulting from spontaneous heat transfer across a finite temperature difference during the process. The thermal irreversibility is attributed to not exploiting the capability for extracting work by interposing a combination of Carnot engine(s) and/or Carnot heat pump(s) that exchanges heat with the surrounding and operates across the finite temperature difference.

Findings

It is shown, with an example, how the contribution of thermal irreversibility, in estimating reversible input work, amounts to a loss of an opportunity to generate the net work output. The opportunity is created by exchanging heat with surroundings whilst transferring the same amount of heat across finite temperature difference. An entropy change is determined with a numerical simulation, including calculation of local entropy generation values, and results are compared with estimates based on an analytical expression.

Originality/value

A new interpretation of entropy combined with an enhanced mental image of a combination of Carnot engine(s) and/or Carnot heat pump(s) is used to quantify thermal irreversibility.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 December 2019

Santosh Bopche and Sandeep Lamba

This paper aims to present experimental work examining the effect of opening size on the collection efficiency of cavity-type receiver geometries, e.g. modified cavity and…

Abstract

Purpose

This paper aims to present experimental work examining the effect of opening size on the collection efficiency of cavity-type receiver geometries, e.g. modified cavity and spherical cavity with single- as well as dual-stage water heating. The correlations, obtained using the experimentally obtained data, are helpful in designing of cavity receivers (modified and spherical geometry type) to be used in solar-power harnessing assignments/projects, for yielding better system performance.

Design/methodology/approach

The parameters of study encompass receiver opening or aperture ratios (d/D, ratio of diameter of opening to the maximum diameter of spherical cavity) of 0.4, 0.47, 0.533 and 0.6; flow Reynolds numbers of 938, 1,175, 1,525 and 1,880 with water as a coolant; and receiver inclination angles of 90, 60, 45 and 30° (with 90° as receiver-opening facing downward and 30° as receiver-aperture facing closer to sideway). A modified cavity receiver was examined for opening ratios of 0.46, 0.6, 0.7 and 0.93. The glass covers, with thickness 2, 4 and 6 mm, were positioned at the opening of cavity to mitigate the energy losses.

Findings

The experiments have been conducted at a lesser incoming radiative heat flux, for receiver cavity wall surface temperatures ranging from 90°C to 180°C. The collection efficiency values of both the receivers, modified cavity and spherical cavity types, are seen increasing with coolant flow rate and receiver tilt (inclination) angles, i.e. 30° → 90°. The collection efficiency exhibits maxima at an opening ratio of 0.533 in case of both single- and double-stage spherical cavity receiver. This value was observed as 0.6 for modified cavity receiver. The mathematical correlations developed for obtaining the collection efficiency values of modified cavity-type receiver, spherical cavity receiver with single stage and spherical cavity receiver with dual-stage water heating are given as ɳ=0.4667 Re0.0798dD0.1651 δ0.0281θ̇0.011, ɳ=0.2317 Re0.124 dD1.265δ0.0192θ̇0.2914 and ɳ=0.1137 Re0.1715dD0.8702θ̇0.2757, respectively.

Social implications

The findings of the paper may be helpful in erecting concentrating solar collector systems for household water heating, concentrating solar-based power generation as well as for various agricultural applications.

Originality/value

The experimental investigations are fewer in the literature examining the combined geometrical influence on the efficiency of cavity receivers with single- and double-stage water heating provisions.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2021

Varinder Kumar and Santosh Bopche

This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver…

Abstract

Purpose

This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver (hemispherical-shaped).

Design/methodology/approach

The numerical models were evolved based on two types of boundary conditions; isothermal receiver surface and non-isothermal receiver surface. For validation of the numerical models with experimental results, three statistical terms were used: mean of absolute deviation, R2 and root mean square error.

Findings

The thermal efficiency of the receiver values obtained using the numerical model with a non-isothermal receiver surface found agreeing well with experimental results. The numerical model with non-isothermal surface boundary condition exhibited more accurate results as compared to that with isothermal surface boundary condition. The receiver heat loss analysis based on the experimental outcomes is also carried out to estimate the contributions of various modes of heat transfer. The losses by radiation, convection and conduction contribute about 27.47%, 70.89% and 1.83%, in the total receiver loss, respectively.

Practical implications

An empirical correlation based on experimental data is also presented to anticipate the effect of studied parameters on the receiver collection efficiency. The anticipations may help to adopt the technology for practical use.

Social implications

The developed models would help to design and anticipating the performance of the dish concentrator system with a modified cavity receiver that may be used for applications e.g. power generation, water heating, air-conditioning, solar cooking, solar drying, energy storage, etc.

Originality/value

The originality of this manuscript comprising presenting a differential-mathematical analysis/modeling of hemispherical shaped modified cavity receiver with non-uniform surface temperature boundary condition. It can estimate the variation of temperature of heat transfer fluid (water) along with the receiver height, by taking into account the receiver cavity losses by means of radiation and convection modes. The model also considers the radiative heat exchange among the internal ring-surface elements of the cavity.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2005

Shiao Lin Beh, C.K. Ooi, G.A. Quadir and K.N. Seetharamu

To provide some new and additional data for the design of a triple stack cold plate.

Abstract

Purpose

To provide some new and additional data for the design of a triple stack cold plate.

Design/methodology/approach

A detailed finite element formulation for the triple stack cold plate with and without heat losses from the top and bottom surfaces of the stack is presented to determine its performance under steady as well as unsteady conditions. The effects of the number of unit cells, different heat losses as well as the governing dimensionless parameter, M (involving stack dimension, properties of the stack material and the variation in the heat transfer coefficient) on the performance of the stack are investigated. The detailed formulation of the asymptotic waveform evaluation scheme is also given and applied to determine the transient performance of the stack.

Findings

The methods of analysis described are quite simple to use to determine the steady and unsteady performance of the triple stack cold plate under different operating conditions. The heat losses from the top and bottom surfaces of the stack do affect the maximum temperature of the stack and in such case, the assembled stack should be analysed.

Research limitations/implications

The analysis is limited to an incompressible fluid. The effect of varying mass flow rate of the fluid in the stack passages is also not considered.

Practical implications

New and additional generated data will be helpful in the design of cold plates used in the cooling of electronic components.

Originality/value

The asymptotic waveform evaluation scheme is used for the first time to determine the transient performance of the triple stack cold plate under different operating conditions. The results thus obtained are compared well with those found from the finite element analysis (FEM), but the computational effort and time required in the analysis is much small as compared to those required in the FEM analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 December 2020

Sayuj Sasidharan and Pradip Dutta

This paper aims to deal with characterisation of the thermal performance of a hybrid tubular and cavity solar thermal receiver.

262

Abstract

Purpose

This paper aims to deal with characterisation of the thermal performance of a hybrid tubular and cavity solar thermal receiver.

Design/methodology/approach

The coupled optical-flow-thermal analysis is carried out on the proposed receiver design. Modelling is performed in two and three dimensions for estimating heat loss by natural convection for an upward-facing cavity. Heat loss obtained in two dimensions by solving coupled continuity, momentum and energy equation inside the cavity domain is compared with the loss obtained using an established Nusselt number correlation for realistic receiver performance prediction.

Findings

It is found that radiation emission from a heated cavity wall to the ambient is the dominant mode of heat loss from the receiver. The findings recommend that fluid flow path must be designed adjacent to the surface exposed to irradiation of concentrated flux to limit conduction heat loss.

Research limitations/implications

On-sun experimental tests need to be performed to validate the numerical study.

Practical implications

Numerical analysis of receivers provides guidelines for effective and efficient solar thermal receiver design.

Social implications

Pressurised air receivers designed from this method can be integrated with Brayton cycles using air or supercritical carbon-dioxide to run a turbine generating electricity using a solar heat source.

Originality/value

The present paper proposes a novel method for coupling the flux map from ray-tracing analysis and using it as a heat flux boundary condition for performing coupled flow and heat transfer analysis. This is achieved using affine transformation implemented using extrusion coupling tool from COMSOL Multiphysics software package. Cavity surface natural convection heat transfer coefficient is obtained locally based on the surface temperature distribution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 May 2019

Daniel Paul Thanaraj, Anand N. and Prince Arulraj

This paper aims to explain the influence of Standard Fire as per ISO 834 on the strength and microstructure properties of concrete specimens with different strength grade.

Abstract

Purpose

This paper aims to explain the influence of Standard Fire as per ISO 834 on the strength and microstructure properties of concrete specimens with different strength grade.

Design/methodology/approach

The strength grades of concrete considered for the experimental investigation were Fck20, Fck30, Fck40 and Fck50. The specimens were heated up to 1, 2, 3 and 4 h as per standard fire curve. Effect of elevated temperature on compressive and flexural behavior of specimens with various strength grades was examined. Effects of age of concrete, weight loss, surface characteristics and thermal crack pattern were also investigated.

Findings

Experimental investigation shows that strength grade, duration of exposure and age of concrete are the key parameters affecting the residual strength of concrete. For the beams exposed to 3 and 4 h of heating, the residual flexural strength was found to be so insignificant that the specimens were not able to even sustain their own weight. The loss in compressive and flexural strength of Fck50 concrete specimens heated up to 1 h were found to be 26.41 and 86.03 per cent of the original unheated concrete, respectively. The weight loss was found to be more for higher grade concrete specimens, and it was about 8.38 per cent for Fck50 concrete. Regression analysis was carried out to establish the empirical relation between residual strength and grade of concrete. Scanning electron microscopy and thermogravimetric analysis were carried out to examine the damage level of fire-affected concrete specimens.

Originality/value

Empirical relationship was developed to determine the residual strength of concrete exposed to elevate temperature, and this will be useful for design applications. This database may be useful for identifying member strength of reinforced beams subjected to various durations of heating so that suitable repair technique can be adopted from the available database. It will be useful to identify the proper grade of concrete with regard to fire endurance, in the case of concrete under compression or flexure.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 February 2008

Markus Weder, René M. Rossi, Cyril Chaigneau and Brice Tillmann

The purpose of this investigation is to measure seven different underwears on a sweating torso with differing relative air humidity (30, 50, 80 and 95 per cent RH) and at a fixed…

1105

Abstract

Purpose

The purpose of this investigation is to measure seven different underwears on a sweating torso with differing relative air humidity (30, 50, 80 and 95 per cent RH) and at a fixed ambient temperature of 30°C to determine the influence of the water vapour partial pressure of the environment on the moisture transport properties of various materials.

Design/methodology/approach

All measurements in this investigation were accomplished with the authors' sweating torso which simulates the thermal‐ and humidity release of the human body. Four different sweating rates (50, 75, 100 and 150 g/h*torso) were selected for this investigation.

Findings

It was established that the partial pressure difference did not correlate directly with the evaporative cooling. In general, higher evaporation rates were observed in the dry climate conditions. However, with low‐sweat rates, the highest relative humidity (95 per cent) generally resulted in greater evaporative cooling than the lowest surrounding humidity conditions (30 per cent). In this investigation, a blended fabric made of PES/Vinal exhibited the most efficient evaporative cooling for all the sweat rates, as well as for the four relative humidity conditions chosen.

Research limitations/implications

All received results are based on a surrounding temperature of 30°C (summer climate), for other temperatures the results may be different.

Originality/value

The investigation shows that both the relative humidity and the sweat rate have a major influence on the heat loss.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 December 2018

Hongbin Zhao, Yu Cao, Chang Liu and Xiang Qi

The purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence…

Abstract

Purpose

The purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence of the environmental conditions, operating conditions and gas conditions on the performance of the system and on quantifying the distribution of useful energy loss and the saving potential of the integrated system changing with different parameters.

Design/methodology/approach

The working process of COG-CCHP was simulated through the establishment of system flow and thermal analysis mathematical model. Using exergy analysis method, the COG-CCHP system’s energy consumption status and the performance changing rules were analyzed.

Findings

The results showed that the combustion chamber has the largest exergy loss among the thermal equipments. Reducing the environmental temperature and pressure can improve the entire system’s reasonable degree of energy. Higher temperature and pressure improved the system’s perfection degree of energy use. Relatively high level of hydrogen and low content of water in COG and an optimal range of CH4 volume fraction between 35 per cent and 46 per cent are required to ensure high exergy efficiency of this integration system.

Originality/value

This paper proposed a CCHP system with the utilization of coke oven gas (COG) and quantified the distribution of useful energy loss and the saving potential of the integrated system under different environmental, operating and gas conditions. The weak links of energy consumption within the system were analyzed, and the characteristics of COG in this way of using were illustrated. This study can provide certain guiding basis for further research and development of the CCHP system performance.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 17000