Search results

1 – 10 of 966
Article
Publication date: 10 July 2023

Chenghui Xu, Sen Leng, Deen Li and Yajun Yu

This paper aims to focus on the accurate analysis of the fractional heat transfer in a two-dimensional (2D) rectangular monolayer tissue with three different kinds of lateral…

Abstract

Purpose

This paper aims to focus on the accurate analysis of the fractional heat transfer in a two-dimensional (2D) rectangular monolayer tissue with three different kinds of lateral boundary conditions and the quantitative evaluation of the degree of thermal damage and burn depth.

Design/methodology/approach

A symplectic method is used to analytically solve the fractional heat transfer dual equation in the frequency domain (s-domain). Explicit expressions of the dual vector can be constructed by superposing the symplectic eigensolutions. The solution procedure is rigorously rational without any trial functions. And the accurate predictions of temperature and heat flux in the time domain (t-domain) are derived through numerical inverse Laplace transform.

Findings

Comparison study shows that the maximum relative error is less than 0.16%, which verifies the accuracy and effectiveness of the proposed method. The results indicate that the model and heat source parameters have a significant effect on temperature and thermal damage. The pulse duration (Δt) of the laser heat source can effectively control the time to reach the peak temperature and the peak slope of the thermal damage curve. The burn depth is closely correlated with exposure temperature and duration. And there exists the delayed effect of fractional order on burn depth.

Originality/value

A symplectic approach is presented for the thermal analysis of 2D fractional heat transfer. A unified time-fractional heat transfer model is proposed to describe the anomalous thermal behavior of biological tissue. New findings might provide guidance for temperature prediction and thermal damage assessment of biological tissues during hyperthermia.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

41

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 19 July 2022

G. Jaya Kumar, Tattukolla Kiran, N. Anand and Khalifa Al-Jabri

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS…

Abstract

Purpose

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS sections exposed to elevated temperature need to be investigated as it is necessary to predict the deterioration of elements to avoid failure of the structure or its elements. Also, it would be helpful to decide whether the structural elements need to be replaced or reused. The use of fire-resistant coatings in steel structures significantly reduces the cost of repairing structural elements and also the probability of collapse. This study investigates the effect of fire-resistant coating on post-fire residual mechanical properties of E350 steel grade.

Design/methodology/approach

In this study, an attempt has been made to evaluate the residual mechanical properties of E350 steel. A tensile coupon test was performed for the extracted specimens from the exposed CFS section to determine the mechanical properties. Four different fire-resistant coatings were selected and the sections were coated and heated as per ISO 834 fire temperature curve in the transient state for time durations of 30 minutes (821°C), 60 minutes (925°C), 90 minutes (986°C), and 120 minutes (1,029°C). After the exposure, all the coupon specimens were cooled by either ambient conditions (natural air) or water spraying before conducting the tension test on these specimens.

Findings

At 30 min exposure, the reduction in yield and ultimate strength of heated specimens was about 20 and 25% for air and water-cooled specimens compared with reference specimens. Specimens coated with vermiculite and perlite exhibited higher residual mechanical property up to 60 minutes than other coated specimens for both cooling conditions. Generally, water-cooled specimens had shown higher strength loss than air-cooled specimens. Specimens coated with vermiculite and perlite showed an excellent performance than other specimens coated with zinc and gypsum for all heating durations.

Originality/value

As CFS structures are widely used in construction practices, it is crucial to study the mechanical properties of CFS under post-fire conditions. This investigation provides detailed information about the physical and mechanical characteristics of E350 steel coated with different types of fire protection materials after exposure to elevated temperatures. An attempt has been made to improve the residual properties of CFS using the appropriate coatings. The outcome of the present study may enable the practicing engineers to select the appropriate coating for protecting and enhancing the service life of CFS structures under extreme fire conditions.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 September 2022

Xue Chen, Zhaohua Zhang and Yutong Yang

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this…

Abstract

Purpose

The purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this sensitive division on thermal response when heating human body in cold environment.

Design/methodology/approach

Eight subjects were invited to use carbon fiber heating patches in an environment of 5 and RH 50%, and eight body parts were selected to explore the heating sensitivity. By measuring the skin temperature and evaluating the subjective thermal sensation and thermal comfort, the thermal sensitivity of local body segments and the influence of single-zone and double-zone heating on human thermal response were explored.

Findings

The sensitivity of local heating on overall thermal sensation (OTS) was foot > back > chest > abdomen > waist > elbow > hand > knee. Both single-zone and double-zone heating can improve the OTS, but double-zone heating can reach thermal neutrality and thermal comfort. In order to prevent the high temperature of heating patches from damaging human body, the local skin temperature should be monitored in the design of local heating clothing, and 39.6 should be taken as the upper limit of local skin temperature.

Originality/value

The results provide a theoretical basis for the selection of heating position in local electric heating clothing (EHC) and the design of intelligent temperature adjustment heating clothing, improve the performance of local EHC and reduce energy consumption.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 December 2023

Nagat Zalhaf, Mariam Ghazy, Metwali Abdelatty and Mohamed Hamed Zakaria

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it…

Abstract

Purpose

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it may cause the whole structure to collapse. Furthermore, repairing and strengthening existing structures with high-performance concrete (HPC) has become essential from both technical and financial points of view. In particular, studying the postfire behavior of HPC with normal strength concrete substrate requires experimental and numerical investigations. Accordingly, this study aims to numerically investigate the post-fire behavior of reinforced composite RC slabs.

Design/methodology/approach

Consequently, in this study, a numerical analysis was carried out to ascertain the flexural behavior of simply supported RC slabs strengthened with HPC and exposed to a particularly high temperature of 600°C for 2 h. This behavior was investigated and analyzed in the presence of a number of parameters, such as HPC types (fiber-reinforced, 0.5% steel, polypropylene fibers [PPF], hybrid fibers), strengthening side (tension or compression), strengthening layer thickness, slab thickness, boundary conditions, reinforcement ratio and yield strength of reinforcement.

Findings

The results showed that traction-separation and full-bond models can achieve accuracy compared with experimental results. Also, the fiber type significantly affects the postfire performance of RC slab strengthened with HPC, where the inclusion of hybrid fiber recorded the highest ultimate load. While adding PPF to HPC showed a rapid decrease in the load-deflection curve after reaching the ultimate load.

Originality/value

The proposed model accurately predicted the thermomechanical behavior of RC slabs strengthened with HPC after being exposed to the fire regarding load-deflection response, crack pattern and failure mode. Moreover, the considered independent parametric variables significantly affect the composite slabs’ behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 April 2022

Nathan Van Den Bossche, Anke Blommaert and Bruno Daniotti

Quality failures in the design and construction process can entail significant delays and costs. Databases of building defects have proven to be useful for drawing conclusions on…

Abstract

Purpose

Quality failures in the design and construction process can entail significant delays and costs. Databases of building defects have proven to be useful for drawing conclusions on underlying causes of building defects and for identifying potential improvement actions to reduce the occurrence of building defects.

Design/methodology/approach

The database comprising 27,074 cases from a Belgian insurance company was studied, and it was found that moisture problems account for 48% of all building defects, and stability problems 23%. To better analyse the geographical variability, the data were enriched with demographical, geographical and climatological factors of the municipality the concerned buildings were located in. This combined information was used to determine underlying external factors that impact the probability that specific types of building defects occur.

Findings

The analysis of the data shows that external factors do indeed have a statistically significant impact. The factor with the highest impact is the number of walls the building has in common with its neighbours. The most significant climatological factor is the wind speed.

Originality/value

A better understanding of the frequency of building defects and factors that contribute to the likelihood are important variables to consider in quality control and prevention.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 August 2023

Zuraihana Bachok, Aizat Abas, Hehgeraj A/L Raja Gobal, Norwahida Yusoff, Mohamad Riduwan Ramli, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani and Muhamed Abdul Fatah Muhamed Mukhtar

This study aims to investigate crack propagation in a moisture-preconditioned soft-termination multi-layer ceramic capacitor (MLCC) during thermal reflow process.

Abstract

Purpose

This study aims to investigate crack propagation in a moisture-preconditioned soft-termination multi-layer ceramic capacitor (MLCC) during thermal reflow process.

Design/methodology/approach

Experimental and extended finite element method (X-FEM) numerical analyses were used to analyse the soft-termination MLCC during thermal reflow. A cross-sectional field emission scanning electron microscope image of an actual MLCC’s crack was used to validate the accuracy of the simulation results generated in the study.

Findings

At 270°C, micro-voids between the copper-electrode and copper-epoxy layers absorbed 284.2 mm/mg3 of moisture, which generated 6.29 MPa of vapour pressure and caused a crack to propagate. Moisture that rapidly vaporises during reflow can cause stresses that exceed the adhesive/substrate interface’s adhesion strength of 6 MPa. Higher vapour pressure reduces crack development resistance. Thus, the maximum crack propagation between the copper-electrode and copper-epoxy layers at high reflow temperature was 0.077 mm. The numerical model was well-validated, as the maximum crack propagation discrepancy was 2.6%.

Practical implications

This research holds significant implications for the industry by providing valuable insights into the moisture-induced crack propagation mechanisms in soft-termination MLCCs during the reflow process. The findings can be used to optimise the design, manufacturing and assembly processes, ultimately leading to enhanced product quality, improved performance and increased reliability in various electronic applications. Moreover, while the study focused on a specific type of soft-termination MLCC in the reflow process, the methodologies and principles used in this research can be extended to other types of MLCC packages. The fundamental understanding gained from this study can be extrapolated to similar structures, enabling manufacturers to implement effective strategies for crack reduction across a wider range of MLCC applications.

Originality/value

The moisture-induced crack propagation in the soft-termination MLCC during thermal reflow process has not been reported to date. X-FEM numerical analysis on crack propagation have never been researched on the soft-termination MLCC.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 966