Search results

1 – 10 of 389
Article
Publication date: 2 January 2020

A. Roja and B.J. Gireesha

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture…

Abstract

Purpose

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture and microchannel heat sinks, which is used to develop a large number of microscopic devices and systems. Enhancement of thermal energy using verity of nanoliquids is one of the challenges in these applications of microfluidics. Therefore, using single wall carbon nanotubes for enhancement of thermal energy in microchannel is the main purpose of this study. Hall effect of natural convection flow in a vertical channel with slip and temperature jump condition is considered. The impacts of radiative heat flux, uniform heat source/sink, viscous dissipation and joule heating are also taken into account.

Design/methodology/approach

Suitable non-dimension variables are applied to the governing equations to reduce the system into ordinary differential equations. The reduced nonlinear system is then solved numerically using Runge–Kutta–Fehlberg fourth–fifth-order method along with shooting technique. The impact of different pertinent parameters on numerical solutions of primary velocity, secondary velocity, temperature, entropy generation and Bejan number is comprehensively discussed in detail. Also, the obtained numerical results are compared with existing one which perfectly found to be in good agreement.

Findings

It is established that, with the aspects of Joule heating, viscous dissipation, radiative heat flux and uniform heat source/sink, the production in the entropy can be improved. Further, it is found that the increasing ratio of wall ambient temperature difference and nanoparticle volume fraction leads to enhance the entropy generation. The same effect reverses with increasing values of fluid wall interaction parameter (FWIP) and rare faction. The irreversibility ratio enhances with larger values of nanoparticle volume fraction and decelerates with increment values of FWIP.

Originality/value

The impact of single wall carbon nanoliquid in a vertical channel flow by using radiative heat flux, heat source/sink, joule heating and viscous dissipation is first time investigated. Further, the influence of Hall current is explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

T. Hayat, S.A. Shehzad and A. Alsaedi

– The purpose of this paper is to investigate the three-dimensional flow of Maxwell fluid with variable thermal conductivity in presence of heat source/sink.

Abstract

Purpose

The purpose of this paper is to investigate the three-dimensional flow of Maxwell fluid with variable thermal conductivity in presence of heat source/sink.

Design/methodology/approach

Similarity transformations are utilized to reduce the nonlinear partial differential equations into ordinary differential equations. The governing nonlinear problems are solved by homotopy analysis method.

Findings

The paper found that the velocities decrease while temperature increases for higher Hartman number. It is also seen that the thermal boundary layer thickness and temperature are increased with an increase in variable thermal conductivity parameter and heat source/sink parameter.

Practical implications

Heat transfer analysis with heat source/sink has pivotal role in many industrial applications like cooling of an infinite metallic plate in a cooling bath, drawing of plastic films, nuclear plants, gas turbines, various propulsion devices for missiles, space vehicles and processes occurring at high temperatures.

Originality/value

This study discusses the magnetohydrodynamic three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. No such analysis exists in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2018

Prabhugouda Mallanagouda Patil, Nafisabanu Kumbarwadi and Shashikant A.

The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink

Abstract

Purpose

The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink and cross-diffusion. Adequate non-similar transformations are used to transform governing mixed convection boundary layer equations to dimensionless form.

Design/methodology/approach

These dimensionless partial differential equations are solved by using implicit finite difference scheme in conjunction with Quasi-linearization technique.

Findings

The effects of admissible parameters such as Eckert number (Ec), the ratio of buoyancy forces parameter (N), non-uniform heat source/sink, Soret and Dufour numbers on flow, temperature and concentration distributions are discussed and analysed through graphs. In addition, the results for skin friction coefficient, Sherwood number and Nusselt number are presented and discussed graphically.

Originality/value

In literature, no research work has been found in similar to this research paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Aminreza Noghrehabadi, Amin Samimi Behbahan and I. Pop

– The purpose of this paper is to study natural convection heat transfer and fluid flow in a square cavity filled with CuO-water nanofluid.

Abstract

Purpose

The purpose of this paper is to study natural convection heat transfer and fluid flow in a square cavity filled with CuO-water nanofluid.

Design/methodology/approach

The entire length of the bottom wall of the cavity is covered by two pairs of heat source-sink, whereas the other walls are insulated. The governing equations of fluid flow are discretized using a finite volume method with a collocated grid arrangement. The coupling between velocity and pressure is solved using the SIMPLEC and the Rhie and Chow interpolation is used to avoid the checker-board solutions for the pressure.

Findings

The numerical results are reported for the effect of Rayleigh number, solid volume fraction and both presence and absence of thermophoresis and Brownian motion effects. The numerical results show an improvement in heat transfer rate for the whole range of Rayleigh numbers when Brownian and thermophoresis effects are considered. Furthermore, an increase in the Rayleigh number and nanoparticle volume fraction in both cases – when Brownian and thermophoresis effects are neglected or considered – has an excellent influence on heat transfer of nanofluids.

Originality/value

The area of nanofluids is very original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2022

Sheeba Juliet S., Vidhya M. and Govindarajan A.

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a…

Abstract

Purpose

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a horizontal rotating channel. The magnetic force is added to the governing equations. The effects of fluid flow parameters are observed under the applied magnetic force. In this system, the magnetic force is applied perpendicular to the plane of the fluid flow. In recent years, the magnetic field has renewed interest in aerospace technology. The physical and theoretical approach in the multidisciplinary field of magneto fluid dynamics (MFD) is applied in the field of aerospace vehicle design.

Design/methodology/approach

Authors use the perturbation method to solve and find the approximate solutions of differential equations. First, convert the partial differential equation to ordinary differential equation and calculate the approximate solutions in two cases. The first solution got by assuming heat generating in the fluid and the second one got when heat absorbing. After applying the external magnetic force, the effects of various fluid parameters velocity, temperature, skin friction coefficient and Nusselt number are found and discussed using tables and graphs.

Findings

It is found that the velocity of the fluid has decreased tendency when the rotation of the fluid and magnetic force on the fluid increases. The temperature of the fluid, Prandtl value and Eckert number increased when the heat source generated heat. When heat absorbs the heat, sink parameter increases and the temperature of the fluid decreases. Also, while heat absorbs, the temperature increases when the Prandtl value and Eckert number increase.

Originality/value

The skin friction coefficient on the surface increases, when the rotation parameter and the magnetic force parameter of the fluid increase. In the case of heat generating, the Nusselt number increased, while the Eckert number and Prandtl numbers increased. Also, the Nusselt number has larger values when the heat source parameter has near the constant temperature, and it has smaller values when the temperature varies. In the case of heat-absorbing, the Nusselt number decreased when the Eckert and Prandtl numbers increased. Also, the Nusselt number varies up and down while the heat absorbing parameter increases.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 July 2019

Seyedmohammad Mousavisani, Javad Khalesi, Hossein Golbaharan, Mohammad Sepehr and D.D. Ganji

The purpose of this paper is to find the approximate solutions of unsteady squeezing nanofluid flow and heat transfer between two parallel plates in the presence of variable heat

Abstract

Purpose

The purpose of this paper is to find the approximate solutions of unsteady squeezing nanofluid flow and heat transfer between two parallel plates in the presence of variable heat source, viscous dissipation and inclined magnetic field using collocation method (CM).

Design/methodology/approach

The partial governing equations are reduced to nonlinear ordinary differential equations by using appropriate transformations and then are solved analytically by using the CM.

Findings

It is observed that the enhancing values of aligned angle of the magnetic causes a reduction in temperature distribution. It is also seen that the effect of nanoparticle volume fraction is significant on the temperature but negligible on the velocity profile.

Originality/value

To the best of the authors’ knowledge, no research has been carried out considering the combined effects of inclined Lorentz forces and variable heat source on squeezing flow and heat transfer of nanofluid between the infinite parallel plates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

P.K. Kameswaran, Z.G. Makukula, P. Sibanda, S.S. Motsa and P.V.S.N. Murthy

The purpose of this paper is to study heat and mass transfer in copper-water and silver-water nanofluid flow over stretching sheet placed in saturated porous medium with internal…

Abstract

Purpose

The purpose of this paper is to study heat and mass transfer in copper-water and silver-water nanofluid flow over stretching sheet placed in saturated porous medium with internal heat generation or absorption. The authors further introduce a new algorithm for solving heat transfer problems in fluid mechanics. The model used for the nanofluid incorporates the nanoparticle volume fraction parameter and a consideration of the chemical reaction effects among other features.

Design/methodology/approach

The partial differential equations for heat and mass transfer in copper-water and silver-water nanofluid flow over stretching sheet were transformed into a system of nonlinear ordinary differential equations. Exact solutions for the boundary layer equations were obtained in terms of a confluent hypergeometric series. A novel spectral relaxation method (SRM) is used to obtain numerical approximations of the governing differential equations. The exact solutions are used to test the convergence and accuracy of the SRM.

Findings

Results were obtained for the fluid properties as well as the skin friction, and the heat and mass transfer rates. The results are compared with limiting cases from previous studies and they show that the proposed technique is an efficient numerical algorithm with assured convergence that serves as an alternative to numerical methods for solving nonlinear boundary value problems.

Originality/value

A new algorithm is used for the first time in this paper. In addition, new exact solutions for the energy and mass transport equations have been obtained in terms of a confluent hypergeometric series.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 January 2019

Shashikumar N.S., B.J. Gireesha, B. Mahanthesh, Prasannakumara B.C. and Ali J. Chamkha

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants…

Abstract

Purpose

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants in microelectromechanical systems (MEMSs). This paper aims to investigate the effects of different alloy nanoparticles such as AA7075 and Ti6Al4V on microchannel flow of magneto-nanoliquids with partial slip and convective boundary conditions. Flow features are explored with the effects of magnetism and nanoparticle shape. Heat transport of fluid includes radiative heat, internal heat source/sink, viscous and Joule heating phenomena.

Design/methodology/approach

Suitable dimensionless variables are used to reduce dimensional governing equations into dimensionless ordinary differential equations. The relevant dimensionless ordinary differential systems are computed numerically by using Runge–Kutta–Fehlberg-based shooting approach. Pertinent results of velocity, temperature, entropy number and Bejan number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Analytical results agree perfectly with numerical results.

Findings

It is established that the entropy production can be improved with radiative heat, Joule heating, convective heating and viscous dissipation aspects. The entropy production is higher in the case of Ti6Al4V-H2O nanofluid than AA7075-H2O. Further, the inequality Ns(ξ)Sphere > Ns(ξ)Hexahedran > Ns(ξ)Tetrahydran > Ns(ξ)Column > Ns(ξ)Lamina holds true.

Originality/value

Effects of aluminium and titanium alloy nanoparticles in microchannel flows by using viscous dissipation and Joule heating are investigated for the first time. Flow features are explored with the effects of magnetism and nanoparticle shape. The results for different alloy nanoparticles such as AA7075 and Ti6Al4V have been compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Muhammad Ijaz Khan, Shahid Farooq, Tasawar Hayat, Faisal Shah and Ahmed Alsaedi

The novel mechanical, chemical and thermodynamics characteristics of both single- and multi-wall carbon nanotubes (CNTs) make them a subject of much attention for the scientists…

Abstract

Purpose

The novel mechanical, chemical and thermodynamics characteristics of both single- and multi-wall carbon nanotubes (CNTs) make them a subject of much attention for the scientists and engineers from all domains. Fluid flows subject to CNTs are significant in biomedical engineering, energy storage systems, domestic and industrial cooling, automobile industries and solar energy collectors, etc. Keeping such effectiveness of CNTs in mind, this paper aims to examine peristaltic flow subject to CNTs in an asymmetric tapered channel. Both single and multiple walls CNTs are considered. The viscosity of nanomaterial depends on nanoparticles volume fraction and temperature. Total entropy rate through second law of thermodynamics is calculated. Heat source/sink and nonlinear heat flux are accounted.

Design/methodology/approach

The complicated flow expressions are simplified through lubrication approach. The velocity, temperature and entropy expressions are numerically solved by the built-in-shooting method.

Findings

The solutions for entropy generation, temperature and velocity are plotted, and the influences of pertinent variables are examined. The authors noticed that entropy generation is an increasing function of the Brinkman number.

Originality/value

The originality of this work is to communicate peristaltic CNTs-based nanomaterial peristaltic flow of viscous fluid in an asymmetric channel. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Rahimah Jusoh, Roslinda Nazar and Ioan Pop

The purpose of this study is to describe the unsteady three-dimensional magnetohydrodynamic stagnation point flow of nanofluids with heat generation/absorption.

Abstract

Purpose

The purpose of this study is to describe the unsteady three-dimensional magnetohydrodynamic stagnation point flow of nanofluids with heat generation/absorption.

Design/methodology/approach

The comprehensive numerical simulations in this study accommodate a physical insight into the heat transfer and flow problem. The use of finite difference method through the bvp4c function in Matlab provides the numerical results and graphical illustrations for the heat transfer rate and shear stress.

Findings

Dual solutions are discovered in this study. Thus, stability analysis is implemented and the first solution complies the stability behavior. Silver nanoparticles dominate the highest thermal conductivity. Accretion of the rate of heat transfer is obtained with an increment in the magnitude of heat absorption, suction parameter and nanoparticle volume fraction. A stronger magnetic field and larger unsteadiness parameter contribute to the increase of the surface shear stress.

Practical implications

Many practical fluid mechanics problems involve the time-dependent element. Practically, an unsteady flow of nanofluid can be implemented in the micro-manufacturing, periodic heat exchanges process, nano drug delivery system and nuclear reactors.

Originality/value

In spite of numerous studies on the unsteady flow, none of the researchers combined the effect of heat generation/absorption and magnetic field in the nanofluid model. The behavior of the flow and heat transfer have been analyzed thoroughly with the variations in the unsteadiness parameter, heat source/sink and nanoparticle volume fraction. Moreover, the discovery of dual solutions in this model strengthens the novelty of this study. Subsequently, the implementation of stability analysis leads to a remarkable revelation where the first solution is found to be stable.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 389