Search results

1 – 10 of 35
Article
Publication date: 28 June 2023

Ailian Chang, Le Huang, Qian-Qian Li, Kambiz Vafai and Minglu Shao

The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior…

Abstract

Purpose

The classical advection-dispersion equation (ADE) model cannot accurately depict the gas transport process in natural geological formations. This paper aims to study the behavior of CO2 transport in fractal porous media by using an effective Hausdorff fractal derivative advection-dispersion equation (HFDADE) model.

Design/methodology/approach

Anomalous dispersion behaviors of CO2 transport are effectively characterized by the investigation of time and space Hausdorff derivatives on non-Euclidean fractal metrics. The numerical simulation has been performed with different Hausdorff fractal dimensions to reveal characteristics of the developed fractal ADE in fractal porous media. Numerical experiments focus on the influence of the time and space fractal dimensions on flow velocity and dispersion coefficient.

Findings

The physical mechanisms of parameters in the Hausdorff fractal derivative model are analyzed clearly. Numerical results demonstrate that the proposed model can well fit the history of gas production data and it can be a powerful technique for depicting the early arrival and long-tailed phenomenon by incorporating a fractal dimension.

Originality/value

To the best of the authors’ knowledge, first time these results are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2021

Yasir Khan

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an…

Abstract

Purpose

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an incompressible fluid. The purpose of this paper is to present a fractal model of the NNVS based on the Hausdorff fractal derivative fundamental concept.

Design/methodology/approach

A two-scale transformation is used to convert the proposed fractal model into regular NNVS. The variational strategy of well-known Chinese scientist Prof. Ji Huan He is used to generate bright and exponential soliton solutions for the proposed fractal system.

Findings

The NNV fractal model and its variational principle are introduced in this paper. Solitons are created with a variety of restriction interactions that must all be applied equally. Finally, the three-dimensional diagrams are displayed using an appropriate range of physical parameters. The results of the solitary solutions demonstrated that the suggested method is very accurate and effective. The proposed methodology is extremely useful and nearly preferable for use in such problems.

Practical implications

The research study of the soliton theory has already played a pioneering role in modern nonlinear science. It is widely used in many natural sciences, including communication, biology, chemistry and mathematics, as well as almost all branches of physics, including nonlinear optics, plasma physics, fluid dynamics, condensed matter physics and field theory, among others. As a result, while constructing possible soliton solutions to a nonlinear NNV model arising from the field of an incompressible fluid is a popular topic, solving nonlinear fluid mechanics problems is significantly more difficult than solving linear ones.

Originality/value

To the best of the authors’ knowledge, for the first time in the literature, this study presents Prof. Ji Huan He's variational algorithm for finding and studying solitary solutions of the fractal NNV model. The reported solutions are novel and present a valuable addition to the literature in soliton theory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2021

Kaihe Shi and Lifeng Wu

The proposed model can emphasize the priority of new information and can extract messages from the first pair of original data. The comparison results show that the proposed model…

Abstract

Purpose

The proposed model can emphasize the priority of new information and can extract messages from the first pair of original data. The comparison results show that the proposed model can improve the traditional grey model.

Design/methodology/approach

The grey multivariate model with fractional Hausdorff derivative is firstly put forward to enhance the forecasting accuracy of traditional grey model.

Findings

The proposed model is used to predict the air quality composite index (AQCI) in ten cities respectively.

Originality/value

The effect of population density on AQCI in cities with poor air quality is not as significant as that of the cities with better air quality.

Details

Kybernetes, vol. 50 no. 11
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 September 2021

Michel C. Delfour

The object of the paper is to illustrate how to obtain the topological derivative as a semidifferential in a general and practical mathematical setting for d-dimensional…

Abstract

Purpose

The object of the paper is to illustrate how to obtain the topological derivative as a semidifferential in a general and practical mathematical setting for d-dimensional perturbations of a bounded open domain in the n-dimensional Euclidean space.

Design/methodology/approach

The underlying methodology uses mathematical notions and powerful tools with ready to check assumptions and ready to use formulas via theorems on the one-sided derivative of parametrized minima and minimax.

Findings

The theory and the examples indicate that the methodology applies to a wide range of problems: (1) compliance and (2) state constrained objective functions where the coupled state/adjoint state equations appear without a posteriori substitution of the adjoint state.

Research limitations/implications

Direct approach that considerably simplifies the analysis and computations.

Originality/value

It was known that the shape derivative was a differential. But the topological derivative is only a semidifferential, that is, a one-sided directional derivative, which is not linear with respect to the direction, and the directions are d-dimensional bounded measures.

Article
Publication date: 1 August 2004

D. Dutta Majumder and Kausik Kumar Majumdar

In this paper, we present a brief study on various paradigms to tackle complexity or in other words manage uncertainty in the context of understanding science, society and nature…

1083

Abstract

In this paper, we present a brief study on various paradigms to tackle complexity or in other words manage uncertainty in the context of understanding science, society and nature. Fuzzy real numbers, fuzzy logic, possibility theory, probability theory, Dempster‐Shafer theory, artificial neural nets, neuro‐fuzzy, fractals and multifractals, etc. are some of the paradigms to help us to understand complex systems. We present a very detailed discussion on the mathematical theory of fuzzy dynamical system (FDS), which is the most fundamental theory from the point of view of evolution of any fuzzy system. We have made considerable extension of FDS in this paper, which has great practical value in studying some of the very complex systems in society and nature. The theories of fuzzy controllers, fuzzy pattern recognition and fuzzy computer vision are but some of the most prominent subclasses of FDS. We enunciate the concept of fuzzy differential inclusion (not equation) and fuzzy attractor. We attempt to present this theoretical framework to give an interpretation of cyclogenesis in atmospheric cybernetics as a case study. We also have presented a Dempster‐Shafer's evidence theoretic analysis and a classical probability theoretic analysis (from general system theoretic outlook) of carcinogenesis as other interesting case studies of bio‐cybernetics.

Details

Kybernetes, vol. 33 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 26 January 2022

Rawid Banchuin

The purpose of this study is to originally present noise analysis of electrical circuits defined on fractal set.

Abstract

Purpose

The purpose of this study is to originally present noise analysis of electrical circuits defined on fractal set.

Design/methodology/approach

The fractal integrodifferential equations of resistor-inductor, resistor-capacitor, inductor-capacitor and resistor-inductor-capacitor circuits subjected to zero mean additive white Gaussian noise defined on fractal set have been formulated. The fractal time component has also been considered. The closed form expressions for crucial stochastic parameters of circuit responses have been derived from these equations. Numerical simulations of power spectral densities based on the derived autocorrelation functions have been performed. A comparison with those without fractal time component has been made.

Findings

We have found that the Hausdorff dimension of the middle b Cantor set strongly affects the power spectral densities; thus, the average powers of noise induced circuit responses and the inclusion of fractal time component causes significantly different analysis results besides the physical measurability of electrical quantities.

Originality/value

For the first time, the noise analysis of electrical circuit on fractal set has been performed. This is also the very first time that the fractal time component has been included in the fractal calculus-based circuit analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 March 2020

Tianyi Wu, Jian Hua Liu, Shaoli Liu, Peng Jin, Hao Huang and Wei Liu

This paper aims to solve the problem of free-form tubes’ machining errors which are caused by their complex geometries and material properties.

Abstract

Purpose

This paper aims to solve the problem of free-form tubes’ machining errors which are caused by their complex geometries and material properties.

Design/methodology/approach

In this paper, the authors propose a multi-view vision-based method for measuring free-form tubes. The authors apply photogrammetry theory to construct the initial model and then optimize the model using an energy function. The energy function is based on the features of the image of the tube. Solving the energy function allows to use the gray features of the images to reconstruct centerline point clouds and thus obtain the pertinent geometric parameters.

Findings

According to the experiments, the measurement process takes less than 2 min and the precision of the proposed system is 0.2 mm. The authors used simple operations to carry out the measurements, and the process is fully automatic.

Originality/value

This paper proposes a method for measuring free-form tubes based on multi-view vision, which has not been attempted to the best of authors’ knowledge. This method differs from traditional multi-view vision measurement methods, because it does not rely on the data of the design model of the tube. The application of the energy function also avoids the problem of matching corresponding points and thus simplifying the calculation and improving its stability.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 January 2012

Zhi Liu, Hongjun Wang and Wei Jiang

The human tongue is a unique organ that can be stuck out of the body for physical examination, and tongue diagnosis is very important in traditional Chinese medicine. Automated…

Abstract

Purpose

The human tongue is a unique organ that can be stuck out of the body for physical examination, and tongue diagnosis is very important in traditional Chinese medicine. Automated tongue area detection is crucial and indispensable for computer‐aided tongue diagnosis, but it is difficult to implement because of the physiological properties of the tongue. For example, as a non‐rigid organ, the tongue has a high degree of variability in size, shape, color, and texture. The purpose of this study is to address this problem.

Design/methodology/approach

This paper presents a hybrid framework for tongue area detection based on active shape model and genetic algorithm with the prior knowledge of tongue shape deformation.

Findings

A set of 612 tongue images was collected from both healthy and sick subjects. Using these images, the proposed method was compared with state‐of‐the‐art methods. The proposed method achieved an improvement of about 10 percent, 36 percent, and 6 percent over the existing methods in terms of mean Hausdorff distance, mean closest point distance, and Williams Index, respectively. The results demonstrate the efficacy of our proposed method in terms of both robustness and accuracy.

Originality/value

The proposed method gives a new approach for computer‐aided tongue diagnosis in medicine.

Details

Sensor Review, vol. 32 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 August 2022

Rawid Banchuin

The purpose of this paper is to test the capability to properly analyze the electrical circuits of a novel constitutive relation of capacitor.

Abstract

Purpose

The purpose of this paper is to test the capability to properly analyze the electrical circuits of a novel constitutive relation of capacitor.

Design/methodology/approach

For ceteris paribus, the constitutive relations of the resistor and inductor have been reformulated by following the novel constitutive relation of capacitor. The responses of RL, RC, LC and RLC circuits defined on the fractal set described by these definitions have been derived by means of the fractal calculus and fractal Laplace transformation. A comparative Hamiltonian formalism-based analysis has been performed where the circuits described by the conventional and the formerly proposed revisited constitutive relations have also been considered.

Findings

This study has found that the novel constitutive relations give unreasonable results unlike the conventional ones. Like such previous revisited constitutive relations, an odd Hamiltonian has been obtained. On the other hand, the conventional constitutive relations give a reasonable Hamiltonian.

Originality/value

To the best of the author’s knowledge, for the first time, the analysis of fractal set defined electrical circuits by means of unconventional constitutive relations has been performed where the deficiency of the tested capacitive constitutive relation has been pointed out.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 35