Search results

1 – 10 of 41
Article
Publication date: 4 April 2023

Yao Chen, Ruijun Liang, Wenfeng Ran and Weifang Chen

In gearbox fault diagnosis, identifying the fault type and severity simultaneously, as well as the compound fault containing multiple faults, is necessary.

Abstract

Purpose

In gearbox fault diagnosis, identifying the fault type and severity simultaneously, as well as the compound fault containing multiple faults, is necessary.

Design/methodology/approach

To diagnose multiple faults simultaneously, this paper proposes a multichannel and multi-task convolutional neural network (MCMT-CNN) model.

Findings

Experiments were conducted on a bearing dataset containing different fault types and severities and a gearbox compound fault dataset. The experimental results show that MCMT-CNN can effectively extract features of different tasks from vibration signals, with a diagnosis accuracy of more than 97%.

Originality/value

Vibration signals at different positions and in different directions are taken as the MC inputs to ensure the integrity of the fault features. Fault labels are established to retain and distinguish the unique features of different tasks. In MCMT-CNN, multiple task branches can connect and share all neurons in the hidden layer, thus enabling multiple tasks to share information.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Case study
Publication date: 20 November 2023

Sumeet Gupta and Sanjeev Prashar

This case is designed to facilitate students to comprehend the challenges an e-commerce firm faces when it attempts to monetize data network effects. The challenges faced by…

Abstract

Learning outcomes

This case is designed to facilitate students to comprehend the challenges an e-commerce firm faces when it attempts to monetize data network effects. The challenges faced by Zomato are ideal for in-class debate and discussion. The following learning objectives can be fulfilled through this case: understanding the promises and issues raised by data network effects; comprehending the problems an e-commerce firm faces in re-configuration; illustrating the responsibility of an established e-commerce firm towards its stakeholders; and discussing how a firm should navigate its relationship with its stakeholders.

Case overview/synopsis

Zomato.com, the largest Indian food aggregator and delivery platform, was contemplating the launch of Zomato Instant, a 10-min food delivery. Currently, the company’s delivery model pivoted around delivering food within 30 min. Recently, Zomato acquired Blinkit, an online grocery shopping app that was positioned to deliver groceries in 10 min. Deepinder Goyal of Zomato felt that customers would soon be more discriminant in demanding quicker services, as they might not be comfortable with 30-min deliveries. Hence, Zomato’s business model must also be re-configured to provide 10-min deliveries. Armed with access to customer data, Goyal predicted items that could be prepared and delivered within 10 min from its dark stores and automated kitchens. Although the model seemed promising and the company was upbeat about it, Zomato Instant faced challenges on several fronts. From the human angle, the decision was criticized on social media, mainly around the violation of road regulations, road safety issues and pressure on the delivery personnel to perform. Many delivery personnel had fled this gig work to join their pre-COVID jobs. Even the Competition Commission of India had established an inquiry into Zomato’s anti-competitive practices using customer data.

Complexity academic level

This case is best taught as part of a curriculum in management programmes at the post-graduate level, in courses such as e-commerce, e-retailing, business models for electronic commerce and online entrepreneurship/new age entrepreneurship. In terms of the positioning in the course, this case could be used to demonstrate the challenges of re-configuration of an online platform.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 3: Entrepreneurship.

Article
Publication date: 16 May 2023

Minh Thi Tran and Son Thai

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with…

Abstract

Purpose

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.

Design/methodology/approach

A numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.

Findings

The results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.

Originality/value

Although there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 May 2023

Soumya Ranjan Guru, Chetla Venugopal and Mihir Sarangi

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the…

Abstract

Purpose

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the present investigation, soybean oil is served as the foundational oil due to its eco-friendliness and status as a vegetable oil with two additives, named polytetrafluoroethylene (PTFE) and molybdenum disulfide (MoS2).

Design/methodology/approach

As additives, PTFE and MoS2 are used; PTFE is renowned for its anti-friction (AF) properties, while MoS2 is a solid lubricant with anti-wear (AW) properties. This investigation examines the synergistic impact of AF and AW additions in vegetable oil. The lubricity of the base oil is measured by using a four-ball tester, and the wear properties of the oil at different additive amounts are determined by using a universal tribometer.

Findings

PTFE (at 5 Wt.%) and MoS2 (at 1 Wt.%) were found to improve the tribological performance of the base oil. The weld load is significantly increased when 5 Wt.% of PTFE + MoS2 is added to the base oil.

Originality/value

A better tribological characteristic can be achieved by combining additives that amount to less than 1% of the base oil. In experiments with highly concentrated MoS2, the adequate pressure improved dramatically, but the lubricant’s tribological characteristics did not.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0321/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 December 2023

Swarnalakshmi Umamaheswaran, Vandita Dar, John Ben Prince and Viswanathan Thangaraj

This study aims to explore the perceptions of investors regarding the risks associated with funding renewable energy projects in India, as well as the various factors that…

Abstract

Purpose

This study aims to explore the perceptions of investors regarding the risks associated with funding renewable energy projects in India, as well as the various factors that influence these perceptions. The investigation is limited to debt providers and seeks to pinpoint the primary risks that bankers perceive and the drivers that shape these perceptions.

Design/methodology/approach

This study draws on interviews and surveys of Indian bank executives, investigating how finance providers perceive risks in the Indian context and the factors driving such perceptions. Qualitative interviews have been used for operationalizing “risk perception” within the renewable energy domain, followed by a quantitative survey and exploratory factor analysis.

Findings

The authors find that experience and capacity are the most important factors that account for 30% of the overall variance. The second factor, which accounts for 15% of the variance, includes the perceived risks in funding renewable energy projects as compared to infrastructure projects. Among individual risks, the authors find that bankers perceive technological risk to be the lowest (5%) and contractual and regulatory risks as the highest (66%) in renewable energy projects.

Research limitations/implications

The study contextualizes risk perception toward renewable energy investments in the Indian context by drawing from the risk perception literature and qualitative interviews with senior bankers. It presents empirical evidence on the decision-making behavior of bankers, who are important stakeholders of the renewable energy ecosystem. The main limitation of the study is the relatively small sample, and generalizing the results to the broader population might require a larger sample. This will facilitate the use of confirmatory factor analysis and structural equation modeling, which can facilitate a more comprehensive understanding of risk perceptions in renewables financing.

Originality/value

Insights gained can be used to provide policy recommendations for improving the financing ecosystem of renewable energy projects. The research significantly contributes to the extant literature within the renewable energy financing domain for emerging economies.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2023

Sara Pope and Robert L. Jackson

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear…

Abstract

Purpose

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear test has been established, it can be used to test any combination of materials or coatings. The effectiveness of several different test methods will also be evaluated, including the sample height, surface roughness and mass difference. In addition, the current work will observe the differences between applying sand before the samples are brought into contact or after. The wear rates obtained from these tests could also be used to predict the wear of other components in similar abrasive particulate environments.

Design/methodology/approach

A modified block-on-flat wear test of anodized aluminum on hard coat anodized aluminum was used to study this. The experiments were performed with and without sand to study the effects of the sand. Two methods of adding sand were also evaluated. Weighing and profilometry were used to study the differences between the tests.

Findings

Wear rates have been calculated based on both the change in the masses of the samples and the change in the height between the upper and lower samples over the course of each test. The wear rates from the change in the masses are repeatable with and without sand, but the results for the change in height show no repeatability without sand. In addition, only in the presence of sand do the trends for the two methods agree. The wear rate was found to be non-linear as a function of load and therefore not in agreement with Archard’s Wear Law. The wear rate also increased significantly when sand was present in the contact for the duration of the test. The sand appears to change the wear mechanism from an adhesive to an abrasive mechanism. Black wear particles formed both when there was sand and when there was not sand. The source of these particles has been investigated but not determined.

Originality/value

This work has not been previously published and is the original work of the authors.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

149

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2023

Berkay Ergene, Gökmen Atlıhan and Ahmet Murat Pinar

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and…

Abstract

Purpose

This study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.

Design/methodology/approach

In this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.

Findings

It can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.

Research limitations/implications

The influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.

Practical implications

As a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.

Social implications

It is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.

Originality/value

When the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams produced with material extrusion based FFF method. In addition, obtained experimental results were also supported with the performed finite element analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 41