Search results

11 – 20 of 226
Article
Publication date: 14 September 2018

Dongdong Chen, Hao Chen, Yaowei Hu and Guozhu Chen

The purpose of this paper is to propose a novel serial structure repetitive control scheme for shunt active power filter (SAPF) to improve the steady-state accuracy and dynamic…

Abstract

Purpose

The purpose of this paper is to propose a novel serial structure repetitive control scheme for shunt active power filter (SAPF) to improve the steady-state accuracy and dynamic performance of SAPF. The novelty of this scheme lies in the reconfiguration of the pole of repetitive control internal model, so that the dynamic response of the repetitive control is improved greatly.

Design/methodology/approach

By analyzing the mathematical model of repetitive control, the repetitive control delay can reduce by giving up the needless poles of the internal model, and the general mk + i repetitive control can be designed through the pole configuration method. The controller can track a set of specific order harmonics.

Findings

The experimental results are coincident with the theoretical analyses, which prove the effectiveness of the proposed method on harmonic suppression and great performance in dynamic response.

Practical implications

An APF prototype has been designed with the serial structure repetitive control proposed in this paper, and it can successfully eliminate the harmonics current of nonlinear load with faster dynamic response. Moreover, the proposed controller can be applied to any three-phase system for fast dynamic response and high tracking accuracy.

Originality/value

In this paper, the mathematical model of the repetitive control for specific set of harmonica is developed. A novel serial structure repetitive control is designed, so that the SAPF can eliminate the fundamental reactive current and specific order harmonics and speed up the dynamic response of the repetitive control.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Vasundhara Mahajan, Pramod Agarwal and Hari Om Gupta

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and…

Abstract

Purpose

The active power filter with two-level inverter needs a high-rating coupling transformer for high-power applications. This complicates the control and system becomes bulky and expensive. The purpose of this paper is to motivate the use of multilevel inverter as harmonic filter, which eliminates the coupling transformer and allows direct control of the power circuit. The advancement in artificial intelligence (AI) for computation is explored for controller design.

Design/methodology/approach

The proposed scheme has a five-level cascaded H-bridge multilevel inverter (CHBMLI) as a harmonic filter. The control scheme includes one neural network controller and two fuzzy logic-based controllers for harmonic extraction, dc capacitor voltage balancing, and compensating current adjustment, respectively. The topology is modeled in MATLAB/SIMULINK and implemented using dSPACE DS1103 interface for experimentation.

Findings

The exhaustive simulation and experimental results demonstrate the robustness and effectiveness of the proposed topology and controllers for harmonic minimization for RL/RC load and change in load. The comparison between traditional PI controller and proposed AI-based controller is presented. It indicates that the AI-based controller is fast, dynamic, and adaptive to accommodate the changes in load. The total harmonic distortion obtained by applying AI-based controllers are well within the IEEE519 std. limits.

Originality/value

The simulation of high-power, medium-voltage system is presented and a downscaled prototype is designed and developed for implementation. The laboratory module of CHBMLI-based harmonic filter and AI-based controllers modeled in SIMULINK is executed using dSPACE DS1103 interface through real time workshop.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 September 2020

Sandhya Ramalingam, Umma Habiba Hyder Ali and Sharmeela Chenniappan

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring…

Abstract

Purpose

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay.

Design/methodology/approach

A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software.

Findings

This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board.

Originality/value

This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 January 2021

Masood Molimoli Hajamohideen and Sreeja Balakrishanapillai Suseela

The purpose of the study is – in Microwave filter design, the performances of passive components are deteriorated by parasitics at gigahertz (GHz) frequency range. A compact and…

Abstract

Purpose

The purpose of the study is – in Microwave filter design, the performances of passive components are deteriorated by parasitics at gigahertz (GHz) frequency range. A compact and multi-stack electromagnetic band gap (EBG) structure is proposed with improved stop band characteristics at GHz frequency range in this work. This paper proposes a new design for ultra wide band pass filter (resonator BPF) with periodically loaded one-dimensional EBG to achieve the harmonic suppression. This basic EBG structure is developed with combination of a signal strip and ground plane in the slotted section. The resonator BPF is loaded with one EBG, two EBG and three EBGs to improve the stop-band rejection.

Design/methodology/approach

The proposed filter is with multi-stack EBG cell for achieving good pass band and stop bands performance. Circuit model is analyzed in Section 2. Section 3 discuses band pass filter loaded with one EBG. In Sections 4 and 5, filter with two and three EBG loaded resonators are discussed, respectively. Section 6 is concluded with comparison of simulation and measured results.

Findings

The stop-band rejection is 20 dB, 40 dB and 50 dB, respectively, in the frequency range of 6 GHz to 20 GHz. The simulation analysis is carried out with advanced system design software. To validate the simulation results, proposed structure is fabricated, and results are found to be in good agreement.

Originality/value

This paper accounts for designing resonator BPF, which has slow wave pass band and stop band characteristics. Second and third harmonics are suppressed using multi-stack EBG. Various stacks with basic designs are proposed and improved results have been demonstrated which is open for future research.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 26 August 2022

Zeynep Bala Duranay

This study aims to present the experimental results for neural network (NN) based harmonic elimination technique for single-phase inverters.

Abstract

Purpose

This study aims to present the experimental results for neural network (NN) based harmonic elimination technique for single-phase inverters.

Design/methodology/approach

Switching angles applied to power switches are determined using the NN technique based on the harmonics to be suppressed. Thus, besides controlling the output voltage, NN controller provides elimination of predetermined harmonics from output signal of single-phase inverter. Simulation and experimental results for the elimination of 15 and 20 low-order harmonics are presented. The switching angle values calculated by a NN , fuzzy logic and Newton–Raphson are compared for elimination of first 10 harmonics.

Findings

This paper provides the harmonic spectra showing that first 15 and 20 harmonics are suppressed from output signal. The NN is proved to give closest results to angle values calculated by Newton–Raphson’s numerical solution method.

Originality/value

The value of this paper is to verify the simulation results with the experimental result for the elimination of 15 and 20 low-order harmonics. Both the simulation and the experimental results demonstrate the success of the NN based selected harmonic elimination.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 August 2018

Rohollah Abdollahi

For direct torque controlled induction motor drives, an effective solution to eliminate harmonics is the use of multipulse alternating current (AC)-direct current (DC) converters…

Abstract

Purpose

For direct torque controlled induction motor drives, an effective solution to eliminate harmonics is the use of multipulse alternating current (AC)-direct current (DC) converters. Many researchers have used different configurations based on 24- and 30-pulse rectifications for improved power quality. However, the total harmonic distortion (THD) of AC mains current with these topology is more than 4 per cent when operating at a light load. For mitigating the THD problems observed in the input currents, Abdollahi propose 40-, 72- and 88-pulse AC-DC converters, while the power quality enhancement was the main concern. It is known that by increasing the number of pulses further results in reduction in current harmonics, but this is accompanied by an increase in cost and complexity. In this context, the purpose of this paper is to design a new delta/hexagon transformer based 36-pulse AC-DC converter for harmonic reduction without increasing the cost and complexity.

Design/methodology/approach

The proposed converter consists of two paralleled 18-pulse AC-DC converters involving a nine-phase shifted uncontrolled diode bridges with an interphase transformer circuit.

Findings

In this paper, the proposed scheme is simulated by matrix laboratory (MATLAB)/SIMULINK considering different loading scenarios. The simulation results show that the proposed scheme improves the power quality indices and satisfies the The Institute of Electrical and Electronics Engineers (IEEE)-519 requirements at the point of common coupling. Also, a laboratory prototype is implemented using the proposed design, and the experimental results confirm the simulation results under different loading conditions.

Originality/value

The proposed solution is a tradeoff among the pulse number, the transformer platform, the complexity of the scheme and the cost. The proposed scheme has an optimized configuration in this regard.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2008

Ming‐Sze Tong, Tae‐Gyu Chang and Ronan Sauleau

To perform studies and comparisons on the electromagnetic band‐gap (EBG) structures, which are constructed by using a combination of inductive and capacitive elements printed on…

Abstract

Purpose

To perform studies and comparisons on the electromagnetic band‐gap (EBG) structures, which are constructed by using a combination of inductive and capacitive elements printed on guided‐wave transmission lines, and by applying a chirping‐and‐tapering technique.

Design/methodology/approach

An in‐house solver based on finite‐difference time‐domain (FDTD) method is adopted for analysis. Conventionally, EBG characteristics are formed by a series of perforations, considered as capacitive elements, on the ground plane(s). To enhance the performance, an additional inductive element is implemented, which is realized by narrowing the strip over the respective perforated regions. For further enhancement, a chirping‐and‐tapering technique is applied on the combined EBG structures for comparisons.

Findings

Through scattering parameter analysis, it was found that the EBG structures using combined inductive and capacitive elements exhibit a band‐gap behavior superior to the ones built with only inductive or capacitive elements. In another set of comparisons, the modified EBG structures combined with a chirping‐and‐tapering technique resulted in further widening of band‐gap, as well as lower side‐lobes and a smoother transition towards the band‐gap region.

Research limitations/implications

Research was mainly limited to studying solely the EBG structures printed on guided‐wave transmission lines.

Practical implications

The proposed EBG structures may be applied into various areas, such as microelectronics and mobile communications for harmonic suppressions, and into other practical electronic circuit structures.

Originality/value

The ideas on applying combined inductive and capacitive elements on various guided‐wave transmission lines to induce EBG characteristics, together with applications of a chirping‐and‐tapering technique on the combined EBG structures give rise to the research originality.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 October 2018

Vahid Asadzadeh, Ali Dastfan and Ahmad Darabi

The purpose of this paper is to describe a new method for selective harmonic elimination in a two-level three-phase inverter-fed direct torque controlled (DTC) permanent magnet…

Abstract

Purpose

The purpose of this paper is to describe a new method for selective harmonic elimination in a two-level three-phase inverter-fed direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive to suppress unwanted resonant frequencies.

Design/methodology/approach

The design methodology is based on random space vector pulse-width modulation (RSVPWM) of PMSM drives. MATLAB simulations support the validity of suggested structure.

Findings

The simulation results of the proposed algorithm exhibit the development of a proper gap at the selected frequency in the frequency spectra of the motor input currents and voltages as well as lowering the ripples in the PMSM electromagnetic torque, stator current and flux linkage responses in compared with traditional DTC.

Originality/value

The proposed algorithm is a revised form of the RSVPWM technique used in a closed-loop structure along with a sliding mode speed controller which is capable to deal with nonlinear motor loads in an online manner. This study can be beneficial for the designers of AC motor drive system who attempt to find a modulation method that can create a selective gap in the power spectrum density of the motor input voltages and currents, therefore, promote an acoustically pleasant drive or alleviate unwanted motor vibrations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 September 2021

JiaRong Wang, Bo He and XiaoQiang Chen

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical…

38

Abstract

Purpose

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical step-down topologies of star-connected autotransformers are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail.

Design/methodology/approach

This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the star-connected autotransformer is redesigned according to the design objective of symmetrical step-down topology. In addition, the mathematical model of two topologies is established and a detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation.

Findings

Two symmetrical star-connected autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on the equivalent capacity of autotransformer are analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [1.1, 5.4] and [1.1, 1.9] respectively.

Research limitations/implications

Because the selected research object is only a star-connected autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study the topologies of other autotransformers.

Practical implications

This paper includes the implications of the step-down ratio on the equivalent capacity of autotransformers and the configuration of transformer windings.

Originality/value

The topologies designed in this paper enable star-connected autotransformer in the 12-pulse rectifier to be applied in step-down circumstances rather than situations of harmonic reduction only. At the same time, this paper provides a way that can be used to redesign the autotransformer in other multi-pulse rectifier systems, so that those transformers can be used in voltage regulation.

Article
Publication date: 2 September 2019

JiaRong Wang and XiaoQiang Chen

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Three new symmetrical…

Abstract

Purpose

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Three new symmetrical step-down topologies of zigzag autotransformer are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail.

Design/methodology/approach

This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the zigzag autotransformer is redesigned according to the design objective of symmetrical step-down topology. Second, the mathematical model of the designed topology is established, and the detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation.

Findings

Three symmetrical zigzag autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on equivalent capacity of autotransformer is analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [0.969, 1.414] and [1.414, 8].

Research limitations/implications

Because the selected research object is only zigzag autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study topologies of other autotransformers.

Practical implications

This paper includes the implications of step-down ratio on the equivalent capacity of autotransformer and the configuration of transformer windings.

Originality/value

The topologies designed in this paper enable zigzag autotransformer to be applied in step-down circumstances.

11 – 20 of 226