Search results

1 – 10 of 605
Article
Publication date: 11 September 2019

Baljeet Singh and Himanshu Singla

The purpose of this paper is to study the effects of rotation, voids and diffusion on characteristics of plane waves in a thermoelastic material.

Abstract

Purpose

The purpose of this paper is to study the effects of rotation, voids and diffusion on characteristics of plane waves in a thermoelastic material.

Design/methodology/approach

Lord and Shulman generalization of linear thermoelasticity is used to study the plane waves in a rotating thermoelastic material with voids and diffusion. The thermoelastic solid is rotating with a uniform angular velocity. The problem is specialized in two dimensions to study wave propagation. The plane harmonic solutions of governing field equations in a plane are obtained.

Findings

A velocity equation is obtained which indicates the propagation of five coupled plane waves in the medium. Reflection of an incident plane wave from stress-free surface of a half-space is also considered to obtain the amplitude ratios of various reflected waves. A numerical example is considered to illustrate graphically the effects of rotation, frequency, void and diffusion parameters on speeds and amplitude ratios of plane waves.

Originality/value

The present problem covers the combined effects of rotation, voids and diffusion on characteristics of plane waves in linear thermoelastic material in the context of Lord and Shulman (1967) and Aouadi (2010) theories, which are not studied in literature yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Rajneesh Kumar and Poonam Sharma

– The purpose of this paper is to study the propagation of harmonic plane waves in a homogeneous anisotropic piezothermoelastic diffusive medium.

Abstract

Purpose

The purpose of this paper is to study the propagation of harmonic plane waves in a homogeneous anisotropic piezothermoelastic diffusive medium.

Design/methodology/approach

After developing the mathematical model and theoretical analysis of the problem, computational work has been performed to study the different characteristics of the plane harmonic waves.

Findings

The existence of waves namely, quasi-longitudinal wave (QP), quasi-thermal wave and quasi-mass diffusion wave have been found which propagates in an anisotropic piezothermoelastic diffusive medium. The different characteristics of waves like phase velocity and attenuation quality factor are computed numerically and presented graphically to show the piezoelectric effect.

Originality/value

A significant piezoelectric effects have been observed on the different characteristics of the waves in an anisotropic piezothermoelastic diffusive medium.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 August 2014

Ya Qin Song, Mohamed I.A. Othman and Zheng Zhao

The purpose of this paper is to study the reflection of a plane harmonic wave at the interface of thermo-microstretch elastic half space. The modulus of elasticity is taken as a…

Abstract

Purpose

The purpose of this paper is to study the reflection of a plane harmonic wave at the interface of thermo-microstretch elastic half space. The modulus of elasticity is taken as a linear function of reference temperature. The formulation is applied to generalized thermoelasticity theories, the Lord-Shulman and Green-Lindsay theories, as well as the classical dynamical coupled theory. Using potential function, the governing equations reduce to ten-order differential equation.

Design/methodology/approach

Coefficient ratios of reflection of different waves with the angle of incidence are obtained using continuous boundary conditions. By numerical calculations, the variation of coefficient ratios of reflection with the angle of incidence is illustrated graphically for magnesium crystal micropolar material under three theories.

Findings

The effect of different temperature-dependent constants and frequency on the coefficient ratios of reflection is illustrated graphically in context of Lord-Shulman theory.

Originality/value

The reflection coefficient ratios are given analytically and illustrated graphically. The effects of thermal relaxation times are very small on reflection coefficient ratio. The temperature-dependent constant and wave frequency have a strong effect on the reflection coefficient ratios.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 October 2022

Vipin Gupta, Rajesh Kumar, Manjeet Kumar, Vijayata Pathania and M.S. Barak

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Abstract

Purpose

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Design/methodology/approach

This investigation studied the reflection and transmission of plane waves on an interface of nonlocal orthotropic piezothermoelastic space (NOPHS) and fluid half-space (FHS) in reference to dual-phase-lag theory under three different temperature models, namely, without-two-temperature, classical-two-temperature, and hyperbolic-two-temperature with memory-dependent derivatives (MDDs).

Findings

The primary (P) plane waves propagate through FHS and strike at the interface x3 = 0. The results are one wave reflected in FHS and four waves transmitted in NOPHS. It is noticed that these ratios are observed under the impact of nonlocal, dual-phase-lag (DPL), two-temperature and memory-dependent parameters and are displayed graphically. Some particular cases are also deduced, and the law of conservation of energy across the interface is justified.

Research limitations/implications

According to the available literature, there is no substantial research on the considered model incorporating NOPHS and FHS with hyperbolic two-temperature, DPL and memory.

Practical implications

The current model may be used in various fields, including earthquake engineering, nuclear reactors, high particle accelerators, aeronautics, soil dynamics and so on, where MDDs and conductive temperature play a significant role. Wave propagation in a fluid-piezothermoelastic media with different characteristics such as initial stress, magnetic field, porosity, temperature, etc., provides crucial information about the presence of new and modified waves, which is helpful in a variety of technical and geophysical situations. Experimental seismologists, new material designers and researchers may find this model valuable in revising earthquake estimates.

Social implications

The researchers may classify the material using the two-temperature parameter and the time-delay operator, where the parameter is a new indication of its capacity to transmit heat in interaction with various materials.

Originality/value

The submitted manuscript is original work done by the team of said authors and each author contributed equally to preparing this manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

P. Hillion

To extend to electromagnetism the acoustic wave reflections on time reversal mirrors used in medical imaging, nondestructive testing and underwater acoustics.

256

Abstract

Purpose

To extend to electromagnetism the acoustic wave reflections on time reversal mirrors used in medical imaging, nondestructive testing and underwater acoustics.

Design/methodology/approach

Recent works (1993‐2004) analyse the reflection of acoustic waves on time reversal mirror. To perform the same job in electromagnetism, the behaviour of the electromagnetic field tensor under the space and time inversions of the referential is investigated and also, when in addition an exchange of two coordinates exists. All these reflections are supposed obtained from perfect but unconventional mirrors.

Findings

Electromagnetic reflections on unconventional mirrors have remarquable features since some of them give birth to a real twin source of the incident source with an opposite polarization.

Practical implications

The techniques used in acoustic to manufacture time reversal mirrors can be used in electromagnetism with possible applications of such mirrors for instance in cameras to avoid reversed photographs but no information on practical realizations has appeared in the open literature.

Orginality/value

Extends research on electromagnetism.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2013

Rajneesh Kumar and Rajeev Kumar

The purpose of this research is to study the reflection and transmission of elastic waves at the interface of an elastic half‐space and initially stressed thermoelastic diffusion…

Abstract

Purpose

The purpose of this research is to study the reflection and transmission of elastic waves at the interface of an elastic half‐space and initially stressed thermoelastic diffusion with voids half‐space.

Design/methodology/approach

Two‐dimensional model has been considered of an isotropic elastic half‐space (Medium I) lying over a homogeneous isotropic generalized initially stressed thermoelastic diffusion with voids half‐space (Medium II). There exist two waves, P‐wave and SV‐wave, in isotropic elastic half‐space and four quasi‐longitudinal waves, namely, quasi‐longitudinal wave (QP‐mode), quasi‐longitudinal mass diffusive wave (QMD‐mode), quasi‐longitudinal thermal wave (QPT‐mode) and quasi‐longitudinal volume fractional wave (QPV‐mode), and one quasi‐transverse wave (QSV‐mode) exists in initially stressed thermoelastic diffusion with voids half‐space.

Findings

The energy ratios of these waves are computed along various directions of incident wave, and it is found that the sum of all energy ratios is exactly unity at each value of incident angle. The amplitude ratios of various waves have been obtained numerically.

Originality/value

Reflection and transmission of an elastic medium is of great practical importance. Since valuable organic and inorganic deposits beneath the earth surface are difficult to detect by drilling randomly, wave propagation is the simplest and most economic technique for these and does not require any drilling through the earth. Almost all the oil companies rely on seismic interpretation for selecting the sites for exploratory oil wells because seismic wave methods have higher accuracy, have higher resolution and are more economical, as compared to drilling which is expansive and time consuming.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 November 2015

Rajneesh Kumar and Vandana Gupta

– The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Abstract

Purpose

The purpose of this paper is to study the propagation of Rayleigh waves in thermoelastic medium with mass diffusion.

Design/methodology/approach

The field equations for the linear theory of homogeneous isotropic thermoelastic diffusion medium are taken into consideration by using dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obtained. After developing mathematical formulation, the dispersion equation is obtained, which results to be complex and irrational. This equation is converted into a polynomial form of higher degree.

Findings

From the polynomial equation, Rayleigh wave root is found. The secular equation is resolved into a polynomial form to find the roots and therefore to find the existence and propagation of Rayleigh wave. The existence of Rayleigh wave in the assumed model depends on the values of various parameters involved in the secular equation. These roots are resolved for phase velocity and attenuation of the inhomogeneous propagation of Rayleigh wave. Behavior of particle motion of these waves inside and at the surface of the thermoelastic medium with mass diffusion is studied. Particular cases of the interest are also deduced from the present investigation.

Originality/value

Governing equations corresponding to DPLT and DPLD models of thermoelastic diffusion are formulated to study the wave propagation and their dependence on various material parameters. In this paper effects of thermal and diffusion phase lags on the phase velocity, attenuation and on particle paths are observed and depicted graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Rajneesh Kumar and Vandana Gupta

The purpose of this paper is to depict the effect of thermal and diffusion phase-lags on plane waves propagating in thermoelastic diffusion medium with different material…

Abstract

Purpose

The purpose of this paper is to depict the effect of thermal and diffusion phase-lags on plane waves propagating in thermoelastic diffusion medium with different material symmetry. A generalized form of mass diffusion equation is introduced instead of classical Fick's diffusion theory by using two diffusion phase-lags, one phase-lag of diffusing mass flux vector, represents the delayed time required for the diffusion of the mass flux and the other phase-lag of chemical potential, represents the delayed time required for the establishment of the potential gradient. The basic equations for the anisotropic thermoelastic diffusion medium in the context of dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models are presented. The governing equations for transversely isotropic and isotropic case are also reduced. The different characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically. Numerically computed results are depicted graphically for anisotropic, transversely isotropic and isotropic medium. The effect of diffusion and thermal phase-lags are shown on the different characteristic of waves. Some particular cases of result are also deduced from the present investigation.

Design/methodology/approach

The governing equations of thermoelastic diffusion are presented using DPLT model and a new model of DPLD. Effect of phase-lags of thermal and diffusion is presented on different characteristic of waves.

Findings

The effect of diffusion and thermal phase-lags on the different characteristic of waves is appreciable. Also the use of diffusion phase-lags in the equation of mass diffusion gives a more realistic model of thermoelastic diffusion media as it allows a delayed response between the relative mass flux vector and the potential gradient.

Originality/value

Introduction of a new model of DPLD in the equation of mass diffusion.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 March 2023

Manjeet Kumar, Pradeep Kaswan, Nantu Sarkar, Xu Liu and Manjeet Kumari

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal…

Abstract

Purpose

The purpose of this article is to investigate the propagation characteristics (such as particle motion, attenuation and phase velocity) of a Rayleigh wave in a nonlocal generalized thermoelastic media.

Design/methodology/approach

The bulk waves are represented with Helmholtz potentials. The stress-free insulated and isothermal plane surfaces are taken into account. Rayleigh wave dispersion relation has been established and is found to be complex. Due to the presence of radicals, the dispersion equation is continuously computed as a complicated irrational expression. The dispersion equation is then converted into a polynomial equation that can be solved numerically for precise complex roots. The extra zeros in this polynomial equation are eliminated to yield the dispersion equation’s roots. These routes are then filtered for inhomogeneous wave propagation that decays with depth. To perform numerical computations, MATLAB software is used.

Findings

In this medium, only one mode of Rayleigh wave exists at both isothermal and insulated boundaries. The thermal factors of nonlocal generalized thermoelastic materials significantly influence the particle motion, attenuation and phase velocity of the Rayleigh wave.

Originality/value

Numerical examples are taken to examine how the thermal characteristics of materials affect the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) both inside and at the isothermal (or insulated) flat surface of the medium under consideration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 March 2023

M.S. Barak, Rajesh Kumar, Rajneesh Kumar and Vipin Gupta

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Abstract

Purpose

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Design/methodology/approach

The dual-phase lag (DPL) theory with memory-dependent derivatives is employed to study the variation of energy ratios at the imperfect interface.

Findings

A plane longitudinal wave (P) or transversal wave (SV) propagates through EHS and strikes at the interface. As a result, two waves are reflected, and four waves are transmitted, as shown in Figure 2. The amplitude ratios are determined by imperfect boundaries having normal stiffness and transverse stiffness. The variation of energy ratios is computed numerically for a particular model of graphite (EHS)/cadmium selenide (OPHS) and depicted graphically against the angle of incidence to consider the effect of stiffness parameters, memory and kernel functions.

Research limitations/implications

The energy distribution of incident P or SV waves among various reflected and transmitted waves, as well as the interaction of waves for imperfect interface (IIF), normal stiffness interface (NSIF), transverse stiffness interface (TSIF), and welded contact interface (WCIF), are important factors to consider when studying seismic wave behavior.

Practical implications

The present model may be used in various disciplines, such as high-energy particle physics, earthquake engineering, nuclear fusion, aeronautics, soil dynamics and other areas where memory-dependent derivative and phase delays are significant.

Originality/value

In a variety of technical and geophysical scenarios, wave propagation in an elastic/piezothermoelastic medium with varying magnetic fields, initial stress, temperature, porosity, etc., gives important information regarding the presence of new and modified waves.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 605