Search results

1 – 10 of 556
Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 December 2022

Eswara Krishna Mussada

The purpose of the study is to establish a predictive model for sustainable wire electrical discharge machining (WEDM) by using adaptive neuro fuzzy interface system (ANFIS)…

Abstract

Purpose

The purpose of the study is to establish a predictive model for sustainable wire electrical discharge machining (WEDM) by using adaptive neuro fuzzy interface system (ANFIS). Machining was done on Titanium grade 2 alloy, which is also nicknamed as workhorse of commercially pure titanium industry. ANFIS, being a state-of-the-art technology, is a highly sophisticated and reliable technique used for the prediction and decision-making.

Design/methodology/approach

Keeping in the mind the complex nature of WEDM along with the goal of sustainable manufacturing process, ANFIS was chosen to construct predictive models for the material removal rate (MRR) and power consumption (Pc), which reflect environmental and economic aspects. The machining parameters chosen for the machining process are pulse on-time, wire feed, wire tension, servo voltage, servo feed and peak current.

Findings

The ANFIS predicted values were verified experimentally, which gave a root mean squared error (RMSE) of 0.329 for MRR and 0.805 for Pc. The significantly low RMSE verifies the accuracy of the process.

Originality/value

ANFIS has been there for quite a time, but it has not been used yet for its possible application in the field of sustainable WEDM of titanium grade-2 alloy with emphasis on MRR and Pc. The novelty of the work is that a predictive model for sustainable machining of titanium grade-2 alloy has been successfully developed using ANFIS, thereby showing the reliability of this technique for the development of predictive models and decision-making for sustainable manufacturing.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 November 2022

Md Doulotuzzaman Xames, Fariha Kabir Torsha and Ferdous Sarwar

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial…

Abstract

Purpose

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial neural networks (ANN) models.

Design/methodology/approach

In the research, three major performance characteristics, i.e. the material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR), were chosen for the study. The input parameters for machining were the voltage, current, pulse-on time and pulse-off time. For the ANN model, a two-layer feedforward network with sigmoid hidden neurons and linear output neurons were chosen. Levenberg–Marquardt backpropagation algorithm was used to train the neural networks.

Findings

The optimal ANN structure comprises four neurons in input layer, ten neurons in hidden layer and one neuron in the output layer (4–10-1). In predicting MRR, the 60–20-20 data split provides the lowest MSE (0.0021179) and highest R-value for training (0.99976). On the contrary, the 70–15-15 data split results in the best performance in predicting both TWR and SR. The model achieves the lowest MSE and highest R-value for training in predicting TWR as 1.17E-06 and 0.84488, respectively. Increasing the number of hidden neurons of the network further deteriorates the performance. In predicting SR, the authors find the best MSE and R-value as 0.86748 and 0.94024, respectively.

Originality/value

This is a novel approach in performance prediction of electrical discharge machining in terms of new workpiece material (TNZ alloys).

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 March 2024

Lijie Ma, Xinhui Mao, Chenrui Li, Yu Zhang, Fengnan Li, Minghua Pang and Qigao Feng

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and…

Abstract

Purpose

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and provide a high-performance lubrication method for the precision cutting of nickel-based alloys.

Design/methodology/approach

The milling tests for Inconel 718 superalloy under dry cutting, flood lubrication and granular flow lubrication were carried out, and the milling force and machined surface quality were used to evaluate their friction reduction effect. Furthermore, based on the energy dispersive spectrometer (EDS) spectrums and the topographical features of machined surface, the lubrication mechanism of different granular mediums was explored during granular flow lubrication.

Findings

Compared with flood lubrication, the granular flow lubrication had a significant force reduction effect, and the maximum milling force was reduced by about 30%. At the same time, the granular flow lubrication was more conducive to reducing the tool trace size, repressing surface damage and thus achieving better surface quality. The soft particles had better friction reduction performance than the hard particles with the same particle size, and the friction reduction performance of nanoscale hard particles was superior to that of microscale hard particles. The friction reduction mechanism of MoS2 and WS2 soft particles is the mending effect and adsorption film effect, whereas that of SiO2 and Al2O3 hard particles is mainly manifested as the rolling and polishing effect.

Originality/value

Granular flow lubrication was applied in the precision milling of Inconel 718 superalloy, and a comparative study was conducted on the friction reduction performance of soft particles (MoS2, WS2) and hard particles (SiO2, Al2O3). Based on the EDS spectrums and topographical features of machined surface, the friction reduction mechanism of soft and hard particles was explored.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 January 2024

Young Jin Shin, Ebrahim Farrokh, Jaehoon Jung, Jaewon Lee and Hanbyul Kang

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting…

Abstract

Purpose

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting process as 1. it does not account for the circular path along which tunnel boring machine (TBM) disk cutters cut the tunnel face, 2. it does not accurately model the position of a disk cutter on the cutterhead, 3. it cannot perfectly replicate the rotational speed of a TBM. To enhance the knowledge of these issues and in order to mimic the real rock-cutting process, a new lab testing equipment was developed by Hyundai Engineering and Construction.

Design/methodology/approach

A new testing machine called rotary cutting machine (RCM) is designed to simulate the excavation process of hard-rock TBMs and includes features such as TBM cutterhead, RPM simulation, constant normal force mode and constant penetration rate mode. Two sets of tests were conducted on Hwandeung granite using different disk cutter sizes to analyze the cutting forces in various excavation modes. The results are analyzed using statistical analysis and dimensional analysis. A new model is generated using dimensional analysis, and its results are compared against the results of actual cases.

Findings

The effectiveness of the new RCM test was demonstrated in its ability to apply various modes of excavation. Initial analysis of chip size revealed that the thickness of the chips is largely dependent on the cutter spacing. Tests with varying RPM showed that an increase in RPM results in an increase in the normal force and rolling force. The cutting coefficient (CC) demonstrated a linear correlation with penetration. The optimal specific energy is achieved at an S/p ratio of around 15. However, a slightly lower S/p ratio can also be used in the design if the cutter specifications permit. A dimensional analysis was utilized to develop a new RCM model based on the results from approximately 1200 tests. The model's applicability was demonstrated through a comparison of TBM penetration data from 26 tunnel projects globally. Results indicated that the predicted penetration rates by the RCM test model were in good agreement with actual rates for the majority of cases. However, further investigation is necessary for softer rock types, which will be conducted in the future using concrete blocks.

Originality/value

The originality of the research lies in the development of Hyundai Engineering and Construction’s advanced full-scale laboratory rotary cutting machine (RCM), which accurately replicates the excavation process of hard-rock tunnel boring machines (TBMs). The study provides valuable insights into cutting forces, chip size, specific energy, RPM and excavation modes, enhancing understanding and decision-making in hard-rock excavation processes. The research also presents a new RCM model validated against TBM penetration data, demonstrating its practical applicability and predictive accuracy.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 December 2022

Prashan Bandara Wijesinghe and Prasanna Illankoon

The purpose of this study was to improve the overall equipment effectiveness (OEE) of the production process of the shredder operation of ABC company, an industrial waste…

Abstract

Purpose

The purpose of this study was to improve the overall equipment effectiveness (OEE) of the production process of the shredder operation of ABC company, an industrial waste management company which supplies pre-processed industrial waste as alternative fuel to a cement plant.

Design/methodology/approach

This case study investigated all possible availability and performance losses that caused the shredder system’s OEE and various problem-solving techniques, such as root cause analysis and Pareto analysis, were used to find the root cause of the reduced OEE.

Findings

After analysing this case study, three significant loss factors were identified from all the availability and performance losses, which caused the shredder system’s OEE losses. Practical solutions were found for the effect of those loss factors to improve the machine’s OEE and productivity.

Research limitations/implications

This case study has been concentrated on only analysing of losses and improvement of OEE in the production process and not about cost analysis between loss and improvements.

Originality/value

This paper shows how to improve the OEE of a production process through various problem-solving techniques by identifying its losses and how to achieve the best solutions for those losses in a practical manner.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 28 December 2022

Emanuele Gabriel Margherita and Alessio Maria Braccini

The purpose of this study is to explore how Industry 4.0 (I40) technologies support workers' engagement in soft total quality management (TQM) practices for organisational…

Abstract

Purpose

The purpose of this study is to explore how Industry 4.0 (I40) technologies support workers' engagement in soft total quality management (TQM) practices for organisational performance.

Design/methodology/approach

The authors conducted a multiple case study of six Italian manufacturing organisations that operate with I40 production and implement TQM practices. The authors concentrated on the relationship between I40 technologies and soft TQM aspects.

Findings

I40 technologies provide two forms of engagement with workers. Workers can act as machine supervisors and expert assembly operators. Organisations use five soft TQM practices to involve and develop workers for TQM that vary according to automation levels. The five soft TQM practices are top management design around workers, incremental trials with I40 technologies, worker empowerment, I40 sociotechnical collaboration and individual feedback systems.

Originality/value

In the literature that focusses primarily on how I40 technologies support the hard side of TQM by creating a data-driven and automated quality management system, the authors illustrate how the workforce can be engaged in I40 with five soft TQM practices to improve organisational performance. Thus, the authors complement the theory of hard and soft TQM aspects for I40 production systems.

Article
Publication date: 15 June 2023

Abena Owusu and Aparna Gupta

Although risk culture is a key determinant for an effective risk management, identifying the risk culture of a firm can be challenging due to the abstract concept of culture. This…

Abstract

Purpose

Although risk culture is a key determinant for an effective risk management, identifying the risk culture of a firm can be challenging due to the abstract concept of culture. This paper proposes a novel approach that uses unsupervised machine learning techniques to identify significant features needed to assess and differentiate between different forms of risk culture.

Design/methodology/approach

To convert the unstructured text in our sample of banks' 10K reports into structured data, a two-dimensional dictionary for text mining is built to capture risk culture characteristics and the bank's attitude towards the risk culture characteristics. A principal component analysis (PCA) reduction technique is applied to extract the significant features that define risk culture, before using a K-means unsupervised learning to cluster the reports into distinct risk culture groups.

Findings

The PCA identifies uncertainty, litigious and constraining sentiments among risk culture features to be significant in defining the risk culture of banks. Cluster analysis on the PCA factors proposes three distinct risk culture clusters: good, fair and poor. Consistent with regulatory expectations, a good or fair risk culture in banks is characterized by high profitability ratios, bank stability, lower default risk and good governance.

Originality/value

The relationship between culture and risk management can be difficult to study given that it is hard to measure culture from traditional data sources that are messy and diverse. This study offers a better understanding of risk culture using an unsupervised machine learning approach.

Details

International Journal of Managerial Finance, vol. 20 no. 2
Type: Research Article
ISSN: 1743-9132

Keywords

Article
Publication date: 8 August 2023

Changro Lee

Unstructured data such as images have defied usage in property valuation for a long time. Instead, structured data in tabular format are commonly employed to estimate property…

Abstract

Purpose

Unstructured data such as images have defied usage in property valuation for a long time. Instead, structured data in tabular format are commonly employed to estimate property prices. This study attempts to quantify the shape of land lots and uses the resultant output as an input variable for subsequent land valuation models.

Design/methodology/approach

Imagery data containing land lot shapes are fed into a convolutional neural network, and the shape of land lots is classified into two categories, regular and irregular-shaped. Then, the intermediate output (regularity score) is utilized in four downstream models to estimate land prices: random forest, gradient boosting, support vector machine and regression models.

Findings

Quantification of the land lot shapes and their exploitation in valuation led to an improvement in the predictive accuracy for all subsequent models.

Originality/value

The study findings are expected to promote the adoption of elusive price determinants such as the shape of a land lot, appearance of a house and the landscape of a neighborhood in property appraisal practices.

Details

Data Technologies and Applications, vol. 58 no. 2
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 10 of 556