Search results

1 – 2 of 2
Article
Publication date: 10 June 2021

Hande Yavuz

Python codes are developed for the versatile structural analysis on a 3 spar multi-cell box beam by means of idealization approach.

Abstract

Purpose

Python codes are developed for the versatile structural analysis on a 3 spar multi-cell box beam by means of idealization approach.

Design/methodology/approach

Shear flow distribution, stiffener loads, location of shear center and location of geometric center are computed via numpy module. Data visualization is performed by using Matplotlib module.

Findings

Python scripts are developed for the structural analysis of multi-cell box beams in lieu of long hand solutions. In-house developed python codes are made available to be used with finite element analysis for verification purposes.

Originality/value

The use of python scripts for the structural analysis provides prompt visualization, especially once dimensional variations are concerned in the frame of aircraft structural design. The developed python scripts would serve as a practical tool that is widely applicable to various multi-cell wing boxes for stiffness purposes. This would be further extended to the structural integrity problems to cover the effect of gaps and/or cut-outs in shear flow distribution in box-beams.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 September 2020

Hande Yavuz

This study aims to investigate the relationship between material properties and alloying elements of carbon steels through predictive modeling. Aircraft control cables are…

Abstract

Purpose

This study aims to investigate the relationship between material properties and alloying elements of carbon steels through predictive modeling. Aircraft control cables are usually made of steel materials and subjected to deformation because of the motion of control surfaces such as aileron, rudder, elevator and trailing edge flaps. Investigation of the relationship between material properties and alloying elements would therefore be explored.

Design/methodology/approach

This study is focused on the modeling of mechanical properties of carbon steels concerning the content of alloying elements by using response surface methodology with false discovery rate (FDR) correction approach. SAS Institute JMP data analysis software was used to develop response and argument relationships in various carbon steels without including thermomechanical treatment effect. Mechanical properties were considered as tensile strength, yield strength, ductility, and Brinell hardness. Carbon (0.28 Wt.%-0.46 Wt.%) and manganese (0.7 Wt.%-0.9 Wt.%) proportions were gathered from ASM Handbook. Linear regression models were tested for the statistical adequacy by using analysis of variance and statistical significance analysis. A posterior probability, which refers to Benjamini–Hochberg FDR (BH-FDR), was embedded as multiple testing corrections of the t-test p-values.

Findings

Predictive modeling of the material properties for aircraft control cables was successfully achieved by using the response surface method with BH-FDR significance level of 0.05.

Originality/value

The effect of statistically developed graphical interactions of alloying elements on the common mechanical properties of such steels would provide prompt comparison to material suppliers and part manufacturers except those subjected to thermomechanical treatment applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2