Search results

1 – 10 of 16
Article
Publication date: 12 December 2022

Godoyon Ebenezer Wusu, Hafiz Alaka, Wasiu Yusuf, Iofis Mporas, Luqman Toriola-Coker and Raphael Oseghale

Several factors influence OSC adoption, but extant literature did not articulate the dominant barriers or drivers influencing adoption. Therefore, this research has not…

Abstract

Purpose

Several factors influence OSC adoption, but extant literature did not articulate the dominant barriers or drivers influencing adoption. Therefore, this research has not only ventured into analyzing the core influencing factors but has also employed one of the best-known predictive means, Machine Learning, to identify the most influencing OSC adoption factors.

Design/methodology/approach

The research approach is deductive in nature, focusing on finding out the most critical factors through literature review and reinforcing — the factors through a 5- point Likert scale survey questionnaire. The responses received were tested for reliability before being run through Machine Learning algorithms to determine the most influencing OSC factors within the Nigerian Construction Industry (NCI).

Findings

The research outcome identifies seven (7) best-performing algorithms for predicting OSC adoption: Decision Tree, Random Forest, K-Nearest Neighbour, Extra-Trees, AdaBoost, Support Vector Machine and Artificial Neural Network. It also reported finance, awareness, use of Building Information Modeling (BIM) and belief in OSC as the main influencing factors.

Research limitations/implications

Data were primarily collected among the NCI professionals/workers and the whole exercise was Nigeria region-based. The research outcome, however, provides a foundation for OSC adoption potential within Nigeria, Africa and beyond.

Practical implications

The research concluded that with detailed attention paid to the identified factors, OSC usage could find its footing in Nigeria and, consequently, Africa. The models can also serve as a template for other regions where OSC adoption is being considered.

Originality/value

The research establishes the most effective algorithms for the prediction of OSC adoption possibilities as well as critical influencing factors to successfully adopting OSC within the NCI as a means to surmount its housing shortage.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 13 October 2022

Christian Nnaemeka Egwim, Hafiz Alaka, Eren Demir, Habeeb Balogun and Saheed Ajayi

This study aims to develop a comprehensive conceptual framework that serves as a foundation for identifying most critical delay risk drivers for Building Information…

Abstract

Purpose

This study aims to develop a comprehensive conceptual framework that serves as a foundation for identifying most critical delay risk drivers for Building Information Modelling (BIM)-based construction projects.

Design/methodology/approach

A systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify key delay risk drivers in BIM-based construction projects that have significant impact on the performance of delay risk predictive modelling techniques.

Findings

The results show that contractor related driver and external related driver are the most important delay driver categories to be considered when developing delay risk predictive models for BIM-based construction projects.

Originality/value

This study contributes to the body of knowledge by filling the gap in lack of a conceptual framework for selecting key delay risk drivers for BIM-based construction projects, which has hampered scientific progress toward development of extremely effective delay risk predictive models for BIM-based construction projects. Furthermore, this study's analyses further confirmed a positive effect of BIM on construction project delay.

Details

Frontiers in Engineering and Built Environment, vol. 3 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 12 August 2022

Muhammad Azeem Abbas, Saheed O. Ajayi, Adekunle Sabitu Oyegoke and Hafiz Alaka

Master information delivery plan (MIDP) is a key requirement for building information modelling (BIM) execution plan (BEP) that enlists all information deliverables in…

Abstract

Purpose

Master information delivery plan (MIDP) is a key requirement for building information modelling (BIM) execution plan (BEP) that enlists all information deliverables in BIM-based project, containing information about what would be prepared, when, by who, as well as the procedures and protocols to be used. In a well-conceived BEP, the MIDP facilitates collaboration among stakeholders. However, current approaches to generating MIDP are manual, making it tedious, error-prone and inconsistent, thereby limiting some expected benefits of BIM implementation. The purpose of this study is to automate the MIDP and demonstrate a collaborative BIM system that overcomes the problems associated with the traditional approach.

Design/methodology/approach

A BIM cloud-based system (named Auto-BIMApp) involving naming that automated MIDP generation is presented. A participatory action research methodology involving academia and industry stakeholders is followed to design and validate the Auto-BIMApp.

Findings

A mixed-method experiment is conducted to compare the proposed automated generation of MIDP using Auto-BIMApp with the traditional practice of using spreadsheets. The quantitative results show over 500% increased work efficiency, with improved and error-free collaboration among team members through Auto-BIMApp. Moreover, the responses from the participants using Auto-BIMApp during the experiment shows positive feedback in term of ease of use and automated functionalities of the Auto-BIMApp.

Originality/value

The replacement of traditional practices to a complete automated collaborative system for the generation of MIDP, with substantial productivity improvement, brings novelty to the present research. The Auto-BIMApp involve multidimensional information, multiple platforms, multiple types and levels of users, and generates three different representations of MIDP.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 December 2022

Saheed O. Ajayi, Natasha Lister, Jamiu Adetayo Dauda, Adekunle Oyegoke and Hafiz Alaka

Health and safety is an important issue in workplaces, and despite safety procedures becoming more strict, serious accidents are still happening within the UK construction…

Abstract

Purpose

Health and safety is an important issue in workplaces, and despite safety procedures becoming more strict, serious accidents are still happening within the UK construction sector. This demonstrates poor performance in the implementation of safety procedures on construction sites. One of the key challenges is the unwillingness of the site workforce, especially the subcontracted operatives, to adhere to safety provisions on construction sites. As such, this study investigates the strategies for enhancing safe behaviour amongst subcontracted operatives in the UK construction industry.

Design/methodology/approach

The study used exploratory sequential mixed method research, involving interviews and questionnaires as means of data collection, and thematic analysis, reliability analysis and exploratory factor analysis as methods of data analysis.

Findings

The study suggests that various carrot and stick measures are expected to be put in place as part of the strategies for enhancing safe behaviour amongst subcontracted operatives. These include adequate enforcement of safety practices by the management, operative engagement and motivation, commendation and rewards, site safety targets, leadership style and motivation.

Originality/value

Application of the suggested measures could enhance safety on construction sites, as it provides practical measures and solutions for inculcating safety behaviours amongst the site operatives who are most likely to be the victims of site accidents.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 September 2022

Christian Nnaemeka Egwim, Hafiz Alaka, Oluwapelumi Oluwaseun Egunjobi, Alvaro Gomes and Iosif Mporas

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Abstract

Purpose

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Design/methodology/approach

This study foremostly combined building energy efficiency ratings from several data sources and used them to create predictive models using a variety of ML methods. Secondly, to test the hypothesis of ensemble techniques, this study designed a hybrid stacking ensemble approach based on the best performing bagging and boosting ensemble methods generated from its predictive analytics.

Findings

Based on performance evaluation metrics scores, the extra trees model was shown to be the best predictive model. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method. Finally, it was discovered that stacking is a superior ensemble approach for analysing building energy efficiency than bagging and boosting.

Research limitations/implications

While the proposed contemporary method of analysis is assumed to be applicable in assessing energy efficiency of buildings within the sector, the unique data transformation used in this study may not, as typical of any data driven model, be transferable to the data from other regions other than the UK.

Practical implications

This study aids in the initial selection of appropriate and high-performing ML algorithms for future analysis. This study also assists building managers, residents, government agencies and other stakeholders in better understanding contributing factors and making better decisions about building energy performance. Furthermore, this study will assist the general public in proactively identifying buildings with high energy demands, potentially lowering energy costs by promoting avoidance behaviour and assisting government agencies in making informed decisions about energy tariffs when this novel model is integrated into an energy monitoring system.

Originality/value

This study fills a gap in the lack of a reason for selecting appropriate ML algorithms for assessing building energy efficiency. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 26 May 2022

Ismail Abiodun Sulaimon, Hafiz Alaka, Razak Olu-Ajayi, Mubashir Ahmad, Saheed Ajayi and Abdul Hye

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not…

182

Abstract

Purpose

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully investigated. This paper aims to investigate the effects traffic data set have on the performance of machine learning (ML) predictive models in AQ prediction.

Design/methodology/approach

To achieve this, the authors have set up an experiment with the control data set having only the AQ data set and meteorological (Met) data set, while the experimental data set is made up of the AQ data set, Met data set and traffic data set. Several ML models (such as extra trees regressor, eXtreme gradient boosting regressor, random forest regressor, K-neighbors regressor and two others) were trained, tested and compared on these individual combinations of data sets to predict the volume of PM2.5, PM10, NO2 and O3 in the atmosphere at various times of the day.

Findings

The result obtained showed that various ML algorithms react differently to the traffic data set despite generally contributing to the performance improvement of all the ML algorithms considered in this study by at least 20% and an error reduction of at least 18.97%.

Research limitations/implications

This research is limited in terms of the study area, and the result cannot be generalized outside of the UK as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature are considered in this research, therefore, leaving out a few other ML algorithms.

Practical implications

This study reinforces the belief that the traffic data set has a significant effect on improving the performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms behave differently when trained with a form of traffic data set in the development of an AQ prediction model. This implies that developers and researchers in AQ prediction need to identify the ML algorithms that behave in their best interest before implementation.

Originality/value

The result of this study will enable researchers to focus more on algorithms of benefit when using traffic data sets in AQ prediction.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 September 2021

Christian Nnaemeka Egwim, Hafiz Alaka, Luqman Olalekan Toriola-Coker, Habeeb Balogun, Saheed Ajayi and Raphael Oseghale

This paper aims to establish the most underlying factors causing construction projects delay from the most applicable.

Abstract

Purpose

This paper aims to establish the most underlying factors causing construction projects delay from the most applicable.

Design/methodology/approach

The paper conducted survey of experts using systematic review of vast body of literature which revealed 23 common factors affecting construction delay. Consequently, this study carried out reliability analysis, ranking using the significance index measurement of delay parameters (SIDP), correlation analysis and factor analysis. From the result of factor analysis, this study grouped a specific underlying factor into three of the six applicable factors that correlated strongly with construction project delay.

Findings

The paper finds all factors from the reliability test to be consistent. It suggests project quality control, project schedule/program of work, contractors’ financial difficulties, political influence, site conditions and price fluctuation to be the six most applicable factors for construction project delay, which are in the top 25% according to the SIDP score and at the same time are strongly associated with construction project delay.

Research limitations/implications

This paper is recommending that prospective research should use a qualitative and inductive approach to investigate whether any new, not previously identified, underlying factors that impact construction projects delay can be discovered as it followed an inductive research approach.

Practical implications

The paper includes implications for the policymakers in the construction industry in Nigeria to focus on measuring the key suppliers’ delivery performance as late delivery of materials by supplier can result in rescheduling of work activities and extra time or waiting time for construction workers as well as for the management team at site. Also, construction stakeholders in Nigeria are encouraged to leverage the amount of data produced from backlog of project schedules, as-built drawings and models, computer-aided designs (CAD), costs, invoices and employee details, among many others through the aid of state-of-the-art data driven technologies such as artificial intelligence or machine learning to make key business decisions that will help drive further profitability. Furthermore, this study suggests that these stakeholders use climatological data that can be obtained from weather observations to minimize impact of bad weather during construction.

Originality/value

This paper establishes the three underlying factors (late delivery of materials by supplier, poor decision-making and Inclement or bad weather) causing construction projects delay from the most applicable.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 September 2021

Luqman Toriola-Coker, Hakeem Owolabi, Hafiz Alaka, Wasiu Adeniran Bello and Chaminda Pathirage

This study aims to investigate two public private partnership (PPP) road projects in Nigeria for exploring factors that can motivate end-user stakeholders for contributing…

Abstract

Purpose

This study aims to investigate two public private partnership (PPP) road projects in Nigeria for exploring factors that can motivate end-user stakeholders for contributing towards sustaining a PPP project in the long-term.

Design/methodology/approach

Using a case study methodology approach, this study adopts two-way data collection strategies via in-depth interviews with PPP experts and end-user stakeholders in Nigeria host communities and a questionnaire survey to relevant stakeholders.

Findings

The study identifies an eight-factor structure indicating critical success factors for ensuring end-user stakeholders support PPP projects on a long-term basis in their host communities.

Originality/value

Results of the study have huge implications for policymakers and project companies by encouraging the early integration of far-sighted measures that will promote long-term support and sustainability for PPP projects amongst the end-user stakeholders.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 12 March 2018

Hafiz A. Alaka, Lukumon O. Oyedele, Hakeem A. Owolabi, Muhammad Bilal, Saheed O. Ajayi and Olugbenga O. Akinade

This study explored use of big data analytics (BDA) to analyse data of a large number of construction firms to develop a construction business failure prediction model…

Abstract

This study explored use of big data analytics (BDA) to analyse data of a large number of construction firms to develop a construction business failure prediction model (CB-FPM). Careful analysis of literature revealed financial ratios as the best form of variable for this problem. Because of MapReduce’s unsuitability for iteration problems involved in developing CB-FPMs, various BDA initiatives for iteration problems were identified. A BDA framework for developing CB-FPM was proposed. It was validated by using 150,000 datacells of 30,000 construction firms, artificial neural network, Amazon Elastic Compute Cloud, Apache Spark and the R software. The BDA CB-FPM was developed in eight seconds while the same process without BDA was aborted after nine hours without success. This shows the issue of not wanting to use large dataset to develop CB-FPM due to tedious duration is resolvable by applying BDA technique. The BDA CB-FPM largely outperformed an ordinary CB-FPM developed with a dataset of 200 construction firms, proving that use of larger sample size with the aid of BDA, leads to better performing CB-FPMs. The high financial and social cost associated with misclassifications (i.e. model error) thus makes adoption of BDA CB-FPMs very important for, among others, financiers, clients and policy makers.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 13 August 2021

Habeeb Balogun, Hafiz Alaka and Christian Nnaemeka Egwim

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper…

Abstract

Purpose

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to pre-process a relatively large data of NO2 from Internet of Thing (IoT) sensors with time-corresponding weather and traffic data and to use the data to develop NO2 prediction models using BA-GS-LSSVM and popular standalone algorithms to allow for a fair comparison.

Design/methodology/approach

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration. The authors used big data analytics infrastructure to retrieve the large volume of data collected in tens of seconds for over 5 months. Weather data from the UK meteorology department and traffic data from the department for transport were collected and merged for the corresponding time and location where the pollution sensors exist.

Findings

The results show that the hybrid BA-GS-LSSVM outperforms all other standalone machine learning predictive Model for NO2 pollution.

Practical implications

This paper's hybrid model provides a basis for giving an informed decision on the NO2 pollutant avoidance system.

Originality/value

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 16