Search results

1 – 10 of 133
Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature…

1454

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 March 2015

B. S. Yilbas, I.-H. Toor, F. Patel, Y. Al-Shehri and M. A. Baig

The purpose of this paper is to investigate the corrosion resistance of high velocity oxy-fuel (HVOF)-sprayed Diamalloy 2002 coating on carbon steel. The coating microstructure is…

Abstract

Purpose

The purpose of this paper is to investigate the corrosion resistance of high velocity oxy-fuel (HVOF)-sprayed Diamalloy 2002 coating on carbon steel. The coating microstructure is examined in line with the corrosion resistance.

Design/methodology/approach

HVOF spraying of coating is achieved, and the coating response to electrolytic solution is measured experimentally in terms of corrosion resistance.

Findings

HVOF coating improves the corrosion resistance of the substrate such that the corrosion rate of the substrate is 7.1 mpy and the coating results in 4.5 mpy. However, presence of deep pit sites at the surface suggests the occurrence of preferential corrosion around the splat boundaries. In addition, closely spaced surface texture peaks act as crevice corrosion centers at the surface while initiating the formation of deep pit sites.

Research limitations/implications

This study is limited by experimental investigations. In future, it may be extended to include model studies.

Practical implications

The findings of this study are very useful for those working in the coating industry. However, HVOF coating is limited to high temperature protection in harsh environments.

Social implications

It is useful for the power industry, particularly for gas turbines.

Originality/value

It is an original work and describes the corrosion resistance of the coating surface. It is found that the coating improved the corrosion resistance of the steel surface.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2006

A. Boudi, M.S.J. Hashmi and B.S. Yilbas

To examine the tensile properties of high velocity oxy‐fuel (HVOF) sprayed Inconel 625 coating of steel substrate before and after the aqueous corrosion.

Abstract

Purpose

To examine the tensile properties of high velocity oxy‐fuel (HVOF) sprayed Inconel 625 coating of steel substrate before and after the aqueous corrosion.

Design/methodology/approach

Workpieces were cut from steel sheets. After chemical and ultrasonic cleaning, workpiece surfaces were sand blasted and HVOF sprayed Inconel 625 coated. The coated and un‐coated surfaces were subjected to the aqueous corrosion tests for one and three weeks. After the completion of the corrosion tests, tensile properties of the workpieces were examined.

Findings

The workpieces subjected to a three weeks static corrosion environment fail at a lower load than the untreated workpiece due to high stiffness. The defect sites in the coating and at the interface act as stress risers and contribute substantially crack initiation and propagation in the coating. Under increasing tensile load in the plastic region, the substrate material can no longer support the coating. This results in extended cracking and gradually spalling of the coat. When the local critical stress for crack propagation is reached, elongated cracks occur, which in turn initiates splitting separation between the adjacent zones in the coating. The shear deformation of the adjusted zones results in the total failures of the coating.

Research limitations/implications

The tests can be extended to include the duplex treated workpieces such as the laser treatment of surface after HVOF sprayed coating. This enhances the bonding of the coating through thermal integration of the coating and the base substrate material.

Practical implications

The results can be used to assess the HVOF sprayed coatings.

Originality/value

This paper provides information on mechanical behavior of HVOF sprayed coating when subjected to the tensile force and offers practical help for the researchers and scientists working in the coating area.

Details

Industrial Lubrication and Tribology, vol. 58 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Shiyu Cui, Qiang Miao, Wenping Liang, Yi Xu and Baiqiang Li

The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of…

Abstract

Purpose

The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of the different processes are analyzed individually. The microstructural characteristics of the as-sprayed coatings are presented and the wear mechanisms of the different WC–10Co–4Cr coatings are discussed in detail.

Design/methodology/approach

The WC–10Co–4Cr coatings were formed on the surface of Q235 steel by plasma and HVOF spraying.

Findings

Plasma spraying causes more decarburizing decomposition of the WC phase than HVOF spraying. In the plasma spraying process, η(Cr25Co25W8C2) phase appears and the C content decreases from the top surface of the coating to the substrate.

Practical implications

In this study, two WC–10Co–4Cr coatings on Q235 steel prepared by plasma and HVOF spraying were compared with respect to the sliding wear behavior.

Originality/value

The wear mechanisms of the plasma- and HVOF-sprayed coatings were abrasive and oxidation, respectively.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 October 2021

Zhiqiang Huang, Zhongquan Yin and Wei Wu

The purpose of this study is to solve the oil drill pipe joints and casing excessive wear problems and to improve the drill pipe joint-casing wear resistance and anti-friction…

Abstract

Purpose

The purpose of this study is to solve the oil drill pipe joints and casing excessive wear problems and to improve the drill pipe joint-casing wear resistance and anti-friction properties.

Design/methodology/approach

On the surface of the drill pipe joints using oxyacetylene flame bead weld (BW) wear-resistant welding wire ARNCO-100XTTM prepares welding layer, high-velocity oxygen fuel (HVOF) Cr3C275-NiCr25 prepares coating and subsonic flame spray and remelt (SFSR) Ni60 prepares coating, then comparing and analyzing the friction and wear of the three types of wear-resistant layers and the casing under the condition of 1.8 g/cm3 mud drilling fluid lubrication. The wear resistance and anti-friction performance of the drill pipe joints were evaluated based on the wear situation, finally revealing its friction and wear mechanisms.

Findings

Three types of wear-resistant layers can improve the surface wear resistance of drill pipe joints, the wear-resistant layer and the substrate are well combined and the welding layers and coating are both dense and uniform. The wear resistance of the HVOF-Cr3C275-NiCr25 coating is 10.9 times that of the BW-ARNCO-100XTTM weld layer, and the wear resistance of the SFSR-Ni60 weld layer is 2.45 times that of the BW-ARNCO-100XTTM weld layer. The anti-friction properties of SFSR-Ni60 welding layer is the best, followed by HVOF-Cr3C275-NiCr25 coating, and the anti-friction properties of BW-ARNCO-100XTTM welding layer is the worst among the three.

Originality/value

The research results of this paper have great practical value in the process and material of improving the wear resistance and anti-friction performance of the drill pipe joint casing.

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2008

A.A. Boudi, M.S.J. Hashmi and B.S. Yilbas

This paper seeks to examine the fatigue properties of HVOF sprayed Inconel‐625 coating of steel substrate before and after the aqueous corrosion.

Abstract

Purpose

This paper seeks to examine the fatigue properties of HVOF sprayed Inconel‐625 coating of steel substrate before and after the aqueous corrosion.

Design/methodology/approach

Workpieces were cut from steel sheets. After chemical and ultrasonic cleaning, workpiece surfaces were sand‐blasted and HVOF sprayed Inconel‐625 coated. The coated and un‐coated surfaces were subjected to the aqueous corrosion tests for one and three weeks. After the completion of the corrosion tests, fatigue properties of the workpieces were examined.

Findings

Stainless steel coated workpieces demonstrated excellent fatigue life resistance versus coated carbon steel workpieces. Stainless steel workpieces apparently have a high‐cycle fatigue represented by in excess of 1.50 million cycles without cracking, thereby assuring a high‐fatigue life. The carbon steel specimens have low‐cycle fatigue and consequently a short fatigue life. In addition, high velocity impacting of splats on to the workpiece enhances the hardness of the surface. This, in turn, improves fatigue properties at the interface, particularly for stainless steel workpieces.

Research limitations/implications

The tests can be extended to include the duplex treated workpieces such as the laser treatment of surface after HVOF sprayed coating. This enhances the bonding of the coating through thermal integration of the coating and the base substrate material.

Practical implications

The results can be used to assess the HVOF sprayed coatings.

Originality/value

This paper provides information on the fatigue behavior of HVOF sprayed coatings when subjected to the cyclic load and offers practical help for the researchers and scientists working in the coatings area.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Varinder Pal Singh Sidhu, Khushdeep Goyal and Rakesh Goyal

This paper aims to use the high-velocity oxy fuel (HVOF) spraying process for depositing 93(WC–Cr3C2)–7Ni, 75Cr3C2–25NiCr, 83WC–17CO and 86WC–10CO–4Cr coatings on ASME SA213 T91…

Abstract

Purpose

This paper aims to use the high-velocity oxy fuel (HVOF) spraying process for depositing 93(WC–Cr3C2)–7Ni, 75Cr3C2–25NiCr, 83WC–17CO and 86WC–10CO–4Cr coatings on ASME SA213 T91 to study the corrosion resistance of these coatings in an actual boiler environment.

Design/methodology/approach

The HVOF spraying process was used for depositing 93(WC–Cr3C2)–7Ni, 75Cr3C2–25NiCr, 83WC–17CO and 86WC–10CO–4Cr coatings on ASME SA213 T91. All the coatings obtained are found to be uniform, dense and having thickness between 200 and 250 μm. All the coatings were exposed in an actual boiler environment at 900°C temperature for 10 cycles. Each cycle consisted of 100 h heating followed by 1 h cooling at ambient conditions. X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy techniques were used to analyse corrosion products.

Findings

All the coated samples were found to be having higher corrosion resistance than the uncoated samples. Among coated specimens, 93(WC–Cr3C2)–7Ni coating has shown maximum and 75Cr3C2–25NiCr coating has shown minimum resistance to corrosion.

Originality/value

This paper is original research.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 April 2022

Rajesh Kumar, Satish Kumar and Deepa Mudgal

The purpose of this paper is to investigate the erosion performance of high velocity oxy fuel- (HVOF) sprayed Al2O3–Cr2O3 composite coatings under silt slurry conditions.

Abstract

Purpose

The purpose of this paper is to investigate the erosion performance of high velocity oxy fuel- (HVOF) sprayed Al2O3–Cr2O3 composite coatings under silt slurry conditions.

Design/methodology/approach

The requisite HVOF composite coatings has been deposited on the stainless steel substrate (SS-304). The slurry erosion pot tester of make Ducom was used for conducting the silt slurry erosion tests on the required substrates. The comprehensive experiments were conducted at different particle size of silt in the range 212–250, 150–212, 53–106 µm, and the concentration of the silt ranged from 10%–40% by weight. The rotational speed of the pot tester has been varied between 500 and 1,500 revolutions per minute, and the test duration has been kept to 4 h.

Findings

The erosion wear resistance of the uncoated SS-304 has been greatly enhanced by the application of HVOF-sprayed Al2O3–Cr2O3 composite coatings. The addition of CeO2 has a significant impact in reducing the erosive wear caused by silt slurry. The composite coating powder composition of 65%Cr2O3 + 34.5%Al2O3 + 0.5%CeO2 has shown the highest erosion resistance.

Practical implications

The developed coatings have the potential to be used for hydro turbines as subjected to silt slurry conditions.

Originality/value

The erosion wear experiments are conducted comprehensively for coated and uncoated samples and the scanning electron micrographs supports the findings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1996

David Harvey

Discusses developments in coatings using high velocity oxyfuel (HVOF). Covers the basic process, comparisons with other thermal spraying processes and optimization of performance…

Abstract

Discusses developments in coatings using high velocity oxyfuel (HVOF). Covers the basic process, comparisons with other thermal spraying processes and optimization of performance. Discusses industrial applications and new developments in the technology.

Details

Industrial Lubrication and Tribology, vol. 48 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 133