Search results

1 – 10 of over 12000
Article
Publication date: 8 April 2021

Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…

Abstract

Purpose

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.

Design/methodology/approach

First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.

Findings

The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.

Originality/value

This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.

Article
Publication date: 6 April 2022

Sinan Maraş and Mustafa Yaman

This study aims to demonstrate the numerical application of differential quadrature (DQ) methods and show the experimental application of free vibration analysis of fiber-metal…

Abstract

Purpose

This study aims to demonstrate the numerical application of differential quadrature (DQ) methods and show the experimental application of free vibration analysis of fiber-metal laminated composite (FML) plates with various boundary conditions.

Design/methodology/approach

The FMLs are hybrid structures consisting of fiber-reinforced polymer matrix composites such as carbon, glass, aramid and different metal sheets, and are currently widely used in the automobile, aircraft and aerospace industries. Thus, free vibration analysis of these hybrid materials is necessary for the design process. The governing equations of motion are derived based on the classical plate theory. The DQ, generalized DQ (GDQ) and harmonic DQ (HDQ) differential quadrature methods have been used to solve the governing equations of an FML composite plate numerically. The accuracy and convergence of the numerical model have been verified by comparing the results available in the published literature with the results obtained from these methods. Moreover, an experimental procedure has been performed in order to compare the results against those of the numerical methods.

Findings

It is noteworthy that a high degree of similarity and accuracy was observed between the numerical results obtained by the DQ methods and the experimental results. Thus, the present study validates the applicability of the DQ methods for designing the FML composite plates.

Originality/value

In this study, the advantages of the DQ methods have been demonstrated differently from previous studies on the vibration analysis of the FML plates.

Details

Engineering Computations, vol. 39 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2017

Zheng Shen, Marie Parker, Derek Brown and Xiangming Fang

Since the implementation of the New Cooperative Medical Scheme (NCMS) in 2003, this program has experienced rapid growth. Even so, little is known about the association between…

Abstract

Purpose

Since the implementation of the New Cooperative Medical Scheme (NCMS) in 2003, this program has experienced rapid growth. Even so, little is known about the association between NCMS expansion and labor force supply among rural residents in China. The purpose of this paper is to examine the effects of the NCMS on labor force supply for rural Chinese populations.

Design/methodology/approach

Using data from the China Health and Nutrition Survey (CHNS), a difference-in-differences (DD) approach is employed to estimate the impact of NCMS expansion on labor supply outcomes, including hours of worked in agriculture, off-farm labor force participation, not working, and weeks off due to illness. A number of falsification tests are conducted to identify whether the assumption of common trends of DD analyses is satisfied. The robustness of results is checked through additional estimation, including panel fixed effects and instrumental variable approach.

Findings

Results show that the NCMS expansion has a positive effect on the hours of worked in agriculture and off-farm labor force participation, and reduces the likelihood of not working and weeks off due to illness. The effect on hours of agricultural production is larger for male adults, those aged 50 or more, and individuals in low-income families. This study demonstrates the importance of potential health improvements from public health insurance in promoting rural residents’ labor productivity.

Originality/value

Studies concerning the effects of public health insurance on labor supply in developing countries remain limited. The findings of this study provide important insights into how public health insurance programs, like the NCMS, may affect patterns of labor supply among rural residents, and can help policymakers improve health policies aimed to reduce the number of uninsured farmers while maintaining high levels of labor supply, productivity, and health status among the most vulnerable of populations.

Details

China Agricultural Economic Review, vol. 9 no. 4
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 22 August 2017

Jikai Liu and Huangchao Yu

Structural performance of additively manufactured parts is deposition path-dependent because of the induced material anisotropy. Hence, this paper aims to contribute a novel idea…

1233

Abstract

Purpose

Structural performance of additively manufactured parts is deposition path-dependent because of the induced material anisotropy. Hence, this paper aims to contribute a novel idea of concurrently performing the deposition path planning and the structural topology optimization for additively manufactured parts.

Design/methodology/approach

The concurrent process is performed under a unified level set framework that: the deposition paths are calculated by extracting the iso-value level set contours, and the induced anisotropic material properties are accounted for by the level set topology optimization algorithm. In addition, the fixed-geometry deposition path optimization problem is studied. It is challenging because updating the zero-value level set contour cannot effectively achieve the global orientation control. To fix this problem, a level set-based multi-step method is proposed, and it is proved to be effective.

Findings

The proposed concurrent design method has been successfully applied to designing additively manufactured parts. The majority of the planned deposition paths well match the principle stress direction, which, to the largest extent, enhances the structural performance. For the fixed geometry problems, fast and smooth convergences have been observed.

Originality/value

The concurrent deposition path planning and structural topology optimization method is, for the first time, developed and effectively implemented. The fixed-geometry deposition path optimization problem is solved through a novel level set-based multi-step method.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 July 2020

Jiehao Li, Junzheng Wang, Shoukun Wang, Hui Peng, Bomeng Wang, Wen Qi, Longbin Zhang and Hang Su

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory…

Abstract

Purpose

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory tracking and stable operation with heavy load are the main challenges of parallel mechanism for wheel-legged robots, especially in complex road conditions. To guarantee the tracking performance in an uncertain environment, the disturbances, including the internal friction, external environment interaction, should be considered in the practical robot system.

Design/methodology/approach

In this paper, a fuzzy approximation-based model predictive tracking scheme (FMPC) for reliable tracking control is developed to the six wheel-legged robot, in which the fuzzy logic approximation is applied to estimate the uncertain physical interaction and external dynamics of the robot system. Meanwhile, the advanced parallel mechanism of the electric six wheel-legged robot (BIT-NAZA) is presented.

Findings

Co-simulation and comparative experimental results using the BIT-NAZA robot derived from the developed hybrid control scheme indicate that the methodology can achieve satisfactory tracking performance in terms of accuracy and stability.

Originality/value

This research can provide theoretical and engineering guidance for lateral stability of intelligent robots under unknown disturbances and uncertain nonlinearities and facilitate the control performance of the mobile robots in a practical system.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 December 2022

Hang Gao and Chao Ma

The purpose of this paper is to propose a novel event-triggered aperiodic intermittent sliding-mode control (ETAI-SMC) algorithm for master–slave bilateral teleoperation robotic…

Abstract

Purpose

The purpose of this paper is to propose a novel event-triggered aperiodic intermittent sliding-mode control (ETAI-SMC) algorithm for master–slave bilateral teleoperation robotic systems to further save communication resources while maintaining synchronization precision.

Design/methodology/approach

By using the Lyapunov theory, a new event-triggered aperiodic intermittent sliding-mode controller is designed to synchronize master–slave robots in a discontinuous method. Unlike traditional periodic time-triggered continuous control strategy, a new ETAI condition is discussed for less communication pressure. Then, the exponential reaching law is adopted to accelerate sliding-mode variables convergence, which has a significant effect on synchronization performance. In addition, the authors use quantizers to make their algorithm have obvious progress in saving communication resources.

Findings

The proposed control algorithm performance is validated by an experiment developed on a practical bilateral teleoperation system with two PHANToM Omni robotic devices. As a result, the synchronization error is limited within a small range and the control frequency is evidently reduced. Compared with a conventional control algorithm, the experimental results illustrate that the proposed control algorithm is more sensitive to system states changes and it can further save communication resources while guaranteeing the system synchronization accuracy, which is more practical for real bilateral teleoperation robotic systems.

Originality/value

A novel ETAI-SMC for bilateral teleoperation robotic systems is proposed to find a balance between reducing the control frequency and synchronization control precision. Combining the traditional sliding-mode control algorithm with the periodic intermittent control strategy and the event-triggered control strategy has produced obvious effect on our control performance. The proposed ETAI-SMC algorithm helps the controller be more sensitive to system states changes, which makes it possible to achieve precise control with lower control frequency. Moreover, we design an environment contact force feedback algorithm for operators to improve the perception of the slave robot working environment. In addition, quantizers and the exponential convergence law are adopted to help the proposed algorithm perform better in saving communication resources and improving synchronization precision.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2001

Y.J. Shen and D.H.T. Walker

Discusses the issue of developing a project design that adequately addresses the practicality of delivering integrated construction knowledge and experience in planning…

6278

Abstract

Discusses the issue of developing a project design that adequately addresses the practicality of delivering integrated construction knowledge and experience in planning, engineering, procurement and field operations. There are few practical examples in the literature that explain how non‐traditional construction project procurement approaches can be utilised to organise an integrated project management system incorporating occupational health and safety (OHS), environmental management (EM) and quality management (QM) systems. Reports on a case study that helps fill that gap. Shows how the adoption of a design and construct procurement approach, together with appropriate management techniques, on a successful major freeway project in Melbourne, Australia, was driven by a sound construction planning process, and integrated the construction planning system with OHS, EM and QM systems.

Details

The TQM Magazine, vol. 13 no. 4
Type: Research Article
ISSN: 0954-478X

Keywords

Article
Publication date: 4 June 2021

Haiya Cai, Yongqing Nan, Yongliang Zhao and Haoran Xiao

The purpose of this study is to regard winter heating as a quasi-natural experiment to identify the possible causal effects of winter heating on population mobility. However…

Abstract

Purpose

The purpose of this study is to regard winter heating as a quasi-natural experiment to identify the possible causal effects of winter heating on population mobility. However, there are scant research studies examining the effect of atmospheric quality on population mobility. There also exists some relevant research studies on the relationship between population mobility and environmental degradation (Lu et al., 2018; Reis et al., 2018; Shen et al., 2018), and these studies exist still some deficiencies.

Design/methodology/approach

The notorious atmospheric quality problems caused by coal-fired heating in winter of northern China have an aroused widespread concern. However, the quantitative study on the effects on population mobility of winter heating is still rare. In this study, the authors regard the winter heating as a quasi-natural experiment, based on the of daily panel data of 58 cities of Tencent location Big Data in China from August 13 to December 30 in 2016 and August 16 to December 30 in 2017, and examine the impacts of winter heating on population mobility by utilizing a regression discontinuity method.

Findings

The findings are as follows, in general, winter heating significantly aggravates regional population mobility, but the impacts on population mobility among different cities are heterogeneous. Specifically, the effects of winter heating on population mobility is greater for cities with relatively good air quality, and the effects is also more obvious for big and medium-sized cities than that in small cities. In addition, different robustness tests, including continuity test, different bandwidth tests and alternative empirical model, are adopted to ensure the reliability of the conclusion. Finally, the authors put forward corresponding policy suggestions from the three dimensions of government, enterprises and residents.

Originality/value

First, regarding winter heating as a quasi-natural experiment, a regression discontinuity design method is introduced to investigate the relationship between winter heating and population mobility, which is helpful to avoid the estimation error caused by endogeneity. Second, the authors use the passenger travel “big data” based on the website of Tencent Location Big Data, which can effectively capture the daily characteristics of China's population mobility. Third, this study discusses the population mobility from the perspective of winter heating and researches population mobility before and after winter heating, which is helpful in enriching the research on population mobility.

Details

Kybernetes, vol. 51 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 December 2022

Chengxi Yan, Xuemei Tang, Hao Yang and Jun Wang

The majority of existing studies about named entity recognition (NER) concentrate on the prediction enhancement of deep neural network (DNN)-based models themselves, but the…

Abstract

Purpose

The majority of existing studies about named entity recognition (NER) concentrate on the prediction enhancement of deep neural network (DNN)-based models themselves, but the issues about the scarcity of training corpus and the difficulty of annotation quality control are not fully solved, especially for Chinese ancient corpora. Therefore, designing a new integrated solution for Chinese historical NER, including automatic entity extraction and man-machine cooperative annotation, is quite valuable for improving the effectiveness of Chinese historical NER and fostering the development of low-resource information extraction.

Design/methodology/approach

The research provides a systematic approach for Chinese historical NER with a three-stage framework. In addition to the stage of basic preprocessing, the authors create, retrain and yield a high-performance NER model only using limited labeled resources during the stage of augmented deep active learning (ADAL), which entails three steps—DNN-based NER modeling, hybrid pool-based sampling (HPS) based on the active learning (AL), and NER-oriented data augmentation (DA). ADAL is thought to have the capacity to maintain the performance of DNN as high as possible under the few-shot constraint. Then, to realize machine-aided quality control in crowdsourcing settings, the authors design a stage of globally-optimized automatic label consolidation (GALC). The core of GALC is a newly-designed label consolidation model called simulated annealing-based automatic label aggregation (“SA-ALC”), which incorporates the factors of worker reliability and global label estimation. The model can assure the annotation quality of those data from a crowdsourcing annotation system.

Findings

Extensive experiments on two types of Chinese classical historical datasets show that the authors’ solution can effectively reduce the corpus dependency of a DNN-based NER model and alleviate the problem of label quality. Moreover, the results also show the superior performance of the authors’ pipeline approaches (i.e. HPS + DA and SA-ALC) compared to equivalent baselines in each stage.

Originality/value

The study sheds new light on the automatic extraction of Chinese historical entities in an all-technological-process integration. The solution is helpful to effectively reducing the annotation cost and controlling the labeling quality for the NER task. It can be further applied to similar tasks of information extraction and other low-resource fields in theoretical and practical ways.

Details

Aslib Journal of Information Management, vol. 75 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 23 October 2007

H.Y. Shen, H.B. Ma, T. Lin and S.B. Chen

The control of weld penetration in gas tungsten arc welding (GTAW) is required for a “teach and playback” robot to overcome the gap variation in the welding process. This paper…

1085

Abstract

Purpose

The control of weld penetration in gas tungsten arc welding (GTAW) is required for a “teach and playback” robot to overcome the gap variation in the welding process. This paper aims to investigate this subject.

Design/methodology/approach

This paper presents a robotic system based on the real‐time vision measurement. The primary objective has been to demonstrate the feasibility of using vision‐based image processing to measure the seam gap in real‐time and adjust welding current and wire‐feed rate to realize the penetration control during the robot‐welding process.

Findings

The paper finds that vision‐based measurement of the seam gap can be used in the welding robot, in real‐time, to control weld penetration. It helps the “teach and playback” robot to adjust the welding procedures according to the gap variation.

Research limitations/implications

The system requires that the seam edges can be accurately identified using a correlation method.

Practical implications

The system is applicable to storage tank welding of a rocket.

Originality/value

The control algorithm based on the knowledge base has been set up for continuous GTAW. A novel visual image analysis method has been developed in the study for a welding robot.

Details

Industrial Robot: An International Journal, vol. 34 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 12000