Search results

1 – 10 of 142
Article
Publication date: 2 August 2013

A.V. Kuznetsov

The purpose of this paper is to investigate the stability of a suspension containing both gyrotactic and oxytactic microorganisms for the case when the suspension occupies a…

Abstract

Purpose

The purpose of this paper is to investigate the stability of a suspension containing both gyrotactic and oxytactic microorganisms for the case when the suspension occupies a horizontal layer of finite depth. The lower boundary of the layer is assumed rigid while at the upper boundary both situations of rigid and stress‐free boundary conditions are considered.

Design/methodology/approach

Linear instability analysis is utilized, and the obtained eigenvalue problem is solved analytically using a one‐term Galerkin method.

Findings

The obtained eigenvalue equation relates three Rayleigh numbers, the traditional thermal Rayleigh number and two bioconvection Rayleigh numbers, for gyrotactic and oxytactic microorganisms.

Research limitations/implications

Only the case of non‐oscillatory instability (which always occurs when heating from the bottom is considered) is analyzed. Further experimental research is needed to elucidate possible interaction between gyrotactic and oxytactic microorganisms. The developed theory is applicable only for dilute suspensions.

Originality/value

This paper extends the traditional theory of bio‐thermal convection to the case when the suspension contains two types of motile microorganisms exhibiting different behaviors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 June 2022

Ambreen A. Khan, Alina Arshad, R. Ellahi and Sadiq M. Sait

This paper aims to deal with the heat transmission of Sutterby fluid-containing gyrotactic microorganism by incorporating non-Darcy resistance law. The mathematical modeling is…

Abstract

Purpose

This paper aims to deal with the heat transmission of Sutterby fluid-containing gyrotactic microorganism by incorporating non-Darcy resistance law. The mathematical modeling is based on nanoparticle concentration, energy, momentum and motile microorganism equations.

Design/methodology/approach

The governing nonlinear coupled equations are first rendered into nonlinear ordinary equations using appropriate transformation and are then solved analytically by using the optimal homotopy.

Findings

Graphical illustration of results depict the behavior of flow involved physical parameters on temperature, gyrotactic microorganism, concentration and velocity. Additionally, local Nusselt number and skin friction coefficient are computed numerically and validated through comparison with existing literature as a special case of proposed model. It is found that the temperature profile decreases by increasing values of Brownian-motion parameter and Prandtl number. An increase in thermophoresis parameter and Schmidt number results in decrease in concentration of nanoparticles. Bioconvection Peclet number corresponds to decreasing behavior of nondimensional gyrotactic microorganism field is observed. Finally, a comparison with the existing literature is made, and an excellent agreement is seen.

Originality/value

To the best of the authors’ knowledge, this study is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 August 2023

P. Sudarsana Reddy and Paluru Sreedevi

Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present…

Abstract

Purpose

Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present work. Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.

Design/methodology/approach

Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.

Findings

The sway of these influenced parameters on standard rates of heat transport, nanoparticles Sherwood number and Sherwood number of microorganisms is also illustrated through graphs. It is perceived that the rates of heat transport remarkably intensifies inside the cavity region with amplifying thermophoresis number values.

Originality/value

The research work carried out in this paper is original and no part is copied from others’ work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 September 2020

H. Waqas, M. Imran, Taseer Muhammad, Sadiq M. Sait and R. Ellahi

The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and…

Abstract

Purpose

The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and gyrotactic motile microorganism features.

Design/methodology/approach

The proposed flow model is based on flow rate, temperature of nanomaterials, volume fraction of nanoparticles and gyrotactic motile microorganisms. Heat and mass transport of nanoliquid is captured by the usage of popular Buongiorno relation, which allows us to evaluate novel characteristics of thermophoresis diffusion and Brownian movement. Additionally, Wu’s slip (second-order slip) mechanisms with double stratification are incorporated. For numerical and graphical results, the built-in bvp4c technique in computational software MATLAB along with shooting technique is used.

Findings

The influence of key elements is illustrated pictorially. Velocity decays for higher magnitude of first- and second-order velocity slips and bioconvection Rayleigh number. The velocity of fluid has an inverse relation with mixed convection parameter and local inertia coefficient. Temperature field enhances with the increase in estimation of thermal stratification Biot number and radiation parameter. A similar situation for concentration field is observed for mixed convection parameter and concentration relaxation parameter. Microorganism concentration profile decreases for higher values of bioconvection Lewis number and Peclet number. A detail discussion is given to see how the graphical aspects justify the physical ones.

Originality/value

To the best of the authors’ knowledge, original research work is not yet available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

S.U. Khan, Sabir Ali Shehzad and N. Ali

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and technological…

Abstract

Purpose

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and technological processes. Therefore, the current research analysis reported the viscoelastic nanofluid flow over porous oscillatory moving sheet in the presence of microorganisms. A rate-type fluid namely Maxwell fluid is employed with the addition of nanoparticles. The paper aims to discuss this issue.

Design/methodology/approach

First, acceptable dimensionless variables are defined to convert the system of dimensional form into the system of dimensionless forms. Later on, the self-similar solution of the boundary value problem is computed by using the homotopy analysis method. The obtained results of velocity, temperature, mass concentration and motile microorganism density profiles are interpreted through physical background.

Findings

The presence of both thermophoresis and Brownian motion parameters also improve the thermophysical features of non-Newtonian nanoparticles. It is also pointed out that the presence of porous medium and magnetic force enhances the nanoparticles concentration. Moreover, a weaker distribution of gyrotactic microorganism has been depicted with Peclet number and bioconvection Lewis parameter.

Originality/value

No such article exists in the literature yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2024

Anup Kumar, Bhupendra Kumar Sharma, Bandar Bin-Mohsen and Unai Fernandez-Gamiz

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach…

Abstract

Purpose

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach their energy needs in areas where traditional fuels are in use. This study aims to examine the sensitivity analysis for optimizing the heat transfer and entropy generation in the Jeffrey magnetohydrodynamic hybrid nanofluid flow under the influence of motile gyrotactic microorganisms with solar radiation in the parabolic trough solar collectors. The influences of viscous dissipation and Ohmic heating are also considered in this investigation.

Design/methodology/approach

Governing partial differential equations are derived via boundary layer assumptions and nondimensionalized with the help of suitable similarity transformations. The resulting higher-order coupled ordinary differential equations are numerically investigated using the Runga-Kutta fourth-order numerical approach with the shooting technique in the computational MATLAB tool.

Findings

The numerical outcomes of influential parameters are presented graphically for velocity, temperature, entropy generation, Bejan number, drag coefficient and Nusselt number. It is observed that escalating the values of melting heat parameter and the Prandl number enhances the Nusselt number, while reverse effect is observed with an enhancement in the magnetic field parameter and bioconvection Lewis number. Increasing the magnetic field and bioconvection diffusion parameter improves the entropy and Bejan number.

Originality/value

Nanotechnology has captured the interest of researchers due to its engrossing performance and wide range of applications in heat transfer and solar energy storage. There are numerous advantages of hybrid nanofluids over traditional heat transfer fluids. In addition, the upswing suspension of the motile gyrotactic microorganisms improves the hybrid nanofluid stability, enhancing the performance of the solar collector. The use of solar energy reduces the industry’s dependency on fossil fuels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

A.A. Avramenko and A.V. Kuznetsov

The purpose of this paper is to investigate a combined bioconvection and thermal instability problem in a horizontal layer of finite depth with a basic temperature gradient…

Abstract

Purpose

The purpose of this paper is to investigate a combined bioconvection and thermal instability problem in a horizontal layer of finite depth with a basic temperature gradient inclined to the vertical. The basic flow, driven by the horizontal component of temperature gradient, is the Hadley circulation, which becomes unstable when the vertical temperature difference and density stratification induced by upswimming of microorganisms that are heavier than water become sufficiently large.

Design/methodology/approach

Linear stability analysis of the basic state is performed; the numerical problem is solved using the collocation method.

Findings

The steady‐state solution of this problem is obtained. Linear stability analysis of this steady‐state solution for the case of three‐dimensional disturbances is performed; the numerical problem is solved using the collocation method. The stability problem is governed by three Rayleigh numbers: the bioconvection Rayleigh number and two thermal Rayleigh numbers characterizing temperature gradients in the vertical and horizontal directions, respectively.

Research limitations/implications

Further research should address the application of weakly non‐linear analysis to this problem.

Practical implications

The dependence of the critical bioconvection Rayleigh number on the two thermal Rayleigh numbers and other relevant parameters is investigated.

Originality/value

This paper presents what is believed to be the first research dealing with the effect of inclined temperature gradient on the stability of bioconvection in a suspension of gyrotactic microorganisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Mikhail Sheremet, Teodor Grosan and Ioan Pop

This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.

Abstract

Purpose

This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.

Design/methodology/approach

The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing and anticipated improved stability of the nanofluid. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model.

Findings

It has been found that the Hartmann number suppresses the heat and mass transfer, while the cavity and magnetic field inclination angles characterize a non-monotonic behavior of the all considered parameters. A rise of the Hartmann number leads to a reduction of the influence rate of the magnetic field inclination angle.

Originality/value

The present results are original and new for the study of MHD-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 June 2021

A.Z. Zaher, Khalid K. Ali and Kh. S. Mekheimer

The study of the electro-osmotic forces (EOF) in the flow of the boundary layer has been a topic of interest in biomedical engineering and other engineering fields. The purpose of…

Abstract

Purpose

The study of the electro-osmotic forces (EOF) in the flow of the boundary layer has been a topic of interest in biomedical engineering and other engineering fields. The purpose of this paper is to develop an innovative mathematical model for electro-osmotic boundary layer flow. This type of fluid flow requires sophisticated mathematical models and numerical simulations.

Design/methodology/approach

The effect of EOF on the boundary layer Williamson fluid model containing a gyrotactic microorganism through a non-Darcian flow (Forchheimer model) is investigated. The problem is formulated mathematically by a system of non-linear partial differential equations (PDEs). By using suitable transformations, the PDEs system is transformed into a system of non-linear ordinary differential equations subjected to the appropriate boundary conditions. Those equations are solved numerically using the finite difference method.

Findings

The boundary layer velocity is lower in the case of non-Newtonian fluid when it is compared with that for a Newtonian fluid. The electro-osmotic parameter makes an increase in the velocity of the boundary layer. The boundary layer velocity is lower in the case of non-Darcian fluid when it is compared with Darcian fluid and as the Forchheimer parameter increases the behavior of the velocity becomes more closely. Entropy generation decays speedily far away from the wall and an opposite effect occurs on the Bejan number behavior.

Originality/value

The present outcomes are enriched to give valuable information for the research scientists in the field of biomedical engineering and other engineering fields. Also, the proposed outcomes are hopefully beneficial for the experimental investigation of the electroosmotic forces on flows with non-Newtonian models and containing a gyrotactic microorganism.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2018

R. Sivaraj, I.L. Animasaun, A.S. Olabiyi, S. Saleem and N. Sandeep

The purpose of this paper is to provide an insight into the influence of gyrotactic microorganisms and Hall effect on the boundary layer flow of 29 nm CuO-water mixture on the…

Abstract

Purpose

The purpose of this paper is to provide an insight into the influence of gyrotactic microorganisms and Hall effect on the boundary layer flow of 29 nm CuO-water mixture on the upper pointed surface of a rocket, over the bonnet of a car and upper pointed surface of an aircraft. This is true since all these objects are examples of an object with variable thickness.

Design/methodology/approach

The simplification of Rosseland approximation (Taylor series expansion of T4 about T) is avoided; thus, two different parameters relating to the study of nonlinear thermal radiation are obtained. The governing equation is non-dimensionalized, parameterized and solved numerically.

Findings

Maximum vertical and horizontal velocities of the 29 nm CuO-water nanofluid flow is guaranteed at a small value of Peclet number and large value of buoyancy parameter depending on the temperature difference. When the magnitude of thickness parameter χ is small, cross-flow velocity decreases with the velocity index and the opposite effect is observed when the magnitude of χ is large.

Originality/value

Directly or indirectly, the importance of the fluid flow which contains 29 nm CuO nanoparticle, water, and gyrotactic microorganisms in the presence of Hall current has been pointed out as an open question in the literature due to its relevance in imaging, ophthalmological and translational medicine informatics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 142