Search results

1 – 10 of 71
Article
Publication date: 14 July 2017

Mohamed Rusthi, Poologanathan Keerthan, Mahen Mahendran and Anthony Ariyanayagam

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Abstract

Purpose

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Design/methodology/approach

This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations.

Findings

The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios.

Originality/value

Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 February 2023

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara and Keerthan Poologanathan

Elevated temperature material properties are essential in predicting structural member's behavior in high-temperature exposures such as fire. Even though experimental…

Abstract

Purpose

Elevated temperature material properties are essential in predicting structural member's behavior in high-temperature exposures such as fire. Even though experimental methodologies are available to determine these properties, advanced equipment with high costs is required to perform those tests. Therefore, performing those experiments frequently is not feasible, and the development of numerical techniques is beneficial. A numerical technique is proposed in this study to determine the temperature-dependent thermal properties of the material using the fire test results based on the Artificial Neural Network (ANN)-based Finite Element (FE) model.

Design/methodology/approach

An ANN-based FE model was developed in the Matlab program to determine the elevated temperature thermal diffusivity, thermal conductivity and the product of specific heat and density of a material. The temperature distribution obtained from fire tests is fed to the ANN-based FE model and material properties are predicted to match the temperature distribution.

Findings

Elevated temperature thermal properties of normal-weight concrete (NWC), gypsum plasterboard and lightweight concrete were predicted using the developed model, and good agreement was observed with the actual material properties measured experimentally. The developed method could be utilized to determine any materials' elevated temperature material properties numerically with the adequate temperature distribution data obtained during a fire or heat transfer test.

Originality/value

Temperature-dependent material properties are important in predicting the behavior of structural elements exposed to fire. This research study developed a numerical technique utilizing ANN theories to determine elevated temperature thermal diffusivity, thermal conductivity and product of specific heat and density. Experimental methods are available to evaluate the material properties at high temperatures. However, these testing equipment are expensive and sophisticated; therefore, these equipment are not popular in laboratories causing a lack of high-temperature material properties for novel materials. However conducting a fire test to evaluate fire performance of any novel material is the common practice in the industry. ANN-based FE model developed in this study could utilize those fire testing results of the structural member (temperature distribution of the member throughout the fire tests) to predict the material's thermal properties.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 January 2022

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara, Keerthan Poologanathan, Gatheeshgar Perampalam and Dilini Perera

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel…

Abstract

Purpose

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel lipped channel sections negative fire performance, cavity insulation materials are utilized in the LSF configuration to enhance its fire performance. The applicability of lightweight concrete filling as cavity insulation in LSF and its effect on the fire performance of LSF are investigated under realistic design fire exposure, and results are compared with standard fire exposure.

Design/methodology/approach

A Finite Element model (FEM) was developed to simulate the fire performance of Light Gauge Steel Frame (LSF) walls exposed to realistic design fires. The model was developed utilising Abaqus subroutine to incorporate temperature-dependent properties of the material based on the heating and cooling phases of the realistic design fire temperature. The developed model was validated with the available experimental results and incorporated into a parametric study to evaluate the fire performance of conventional LSF walls compared to LSF walls with lightweight concrete filling under standard and realistic fire exposures.

Findings

Novel FEM was developed incorporating temperature and phase (heating and cooling) dependent material properties in simulating the fire performance of structures exposed to realistic design fires. The validated FEM was utilised in the parametric study, and results exhibited that the LSF walls with lightweight concrete have shown better fire performance under insulation and load-bearing criteria in Eurocode parametric fire exposure. Foamed Concrete (FC) of 1,000 kg/m3 density showed best fire performance among lightweight concrete filling, followed by FC of 650 kg/m3 and Autoclaved Aerated Concrete (AAC) 600 kg/m3.

Research limitations/implications

The developed FEM is capable of investigating the insulation and load-bearing fire ratings of LSF walls. However, with the availability of the elevated temperature mechanical properties of the LSF wall, materials developed model could be further extended to simulate the complete fire behaviour.

Practical implications

LSF structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel-lipped channel sections negative fire performance, cavity insulation materials are utilised in the LSF configuration to enhance its fire performance. The lightweight concrete filling in LSF is a novel idea that could be practically implemented in the construction, which would enhance both fire performance and the mechanical performance of LSF walls.

Originality/value

Limited studies have investigated the fire performance of structural elements exposed to realistic design fires. Numerical models developed in those studies have considered a similar approach as models developed to simulate standard fire exposure. However, due to the heating phase and the cooling phase of the realistic design fires, the numerical model should incorporate both temperature and phase (heating and cooling phase) dependent properties, which was incorporated in this study and validated with the experimental results. Further lightweight concrete filling in LSF is a novel technique in which fire performance was investigated in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 April 2021

Kun Liu, Wei Chen, Jihong Ye, Jian Jiang, Wenwen Chen and Mingyue Zhao

Most previous thermal-mechanical modeling of cold-formed steel (CFS) walls did not consider the failure of screwed connections under fire conditions because of the limited data of…

Abstract

Purpose

Most previous thermal-mechanical modeling of cold-formed steel (CFS) walls did not consider the failure of screwed connections under fire conditions because of the limited data of such connections at elevated temperatures.

Design/methodology/approach

In this study, 285 steady-state tests are conducted on CFS screwed connections with single-layer gypsum plasterboard (GPB) and Bolivian magnesium board (BMB) sheathing at ambient and elevated temperatures. The failure of these connections is described as the breaking of the loaded sheathing edge.

Findings

For the BMB sheathing screwed connections, hydrochloric acid gas is generated and released above 300°C, and the shear strength becomes much less than that of the GPB sheathing screwed connection above 370°C. Hence, BMB may not be suitable for use as the face-layer sheathing of CFS walls but is still recommended to replace GPB as the base-layer sheathing. The major influencing parameters on the shear strength of screwed connections are identified as the type of sheathing material and the loaded sheathing edge distance.

Originality/value

Based on the previous and present test results, a unified expression for the residual shear strength of screwed connections with GPB and BMB is proposed at ambient and elevated temperatures with acceptable accuracy. It can be used as the basic input parameter of the numerical simulation of the CFS structures under fire conditions.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel…

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 August 2014

Poologanathan Keerthan and Mahen Mahendran

Cold-formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design…

Abstract

Cold-formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.

Article
Publication date: 14 November 2017

Mattia Tiso and Alar Just

Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the…

Abstract

Purpose

Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the load-bearing function of timber frame assemblies with cavities completely filled with stone wool. Very little is known about the fire protection provided by other insulation materials. An improved design model which has the potential to consider the contribution of any insulation material has been introduced by the authors. This paper aims to analyze the parameters that describe in a universal way the protection against the charring given by different insulations not included in Eurocode 5.

Design/methodology/approach

A series of model-scale furnace tests of floor specimens for three different insulation materials were carried out. An analysis on the charring depth of the residual cross-sections was conducted by means of a resistograph device.

Findings

The study explains the criteria and procedure followed to derive the coefficients for the improved design model for three insulations involved in the study.

Originality/value

This research study involves a large experimental work which forms the basis of the proposed design model. This study presents an important step for fire resistance calculations of timber frame assemblies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 March 2021

H.M. Iqbal Mahmud, Autri Mandal, Sudip Nag and Khalid A.M. Moinuddin

The purpose of this study is to investigate the performance of fire protective materials in protecting steel section. A new indexing system is introduced, named as fire endurance…

Abstract

Purpose

The purpose of this study is to investigate the performance of fire protective materials in protecting steel section. A new indexing system is introduced, named as fire endurance index (FEI), which can be used to evaluate the performance of fire protective materials.

Design/methodology/approach

In this study, experiments were carried out using W4 × 13 steel section. Eight samples were prepared; one was a bare steel section without any coating material, and seven were prepared using four types of materials such as vermiculite-gypsum plaster, gypsum plaster, concrete cover and glass wool-concrete cover for fireproofing of the sections. An enclosed electric coiled furnace was used for heating the samples for a certain period. The duration of protection was determined, and the FEI of the materials was calculated. The higher the index value is, the better the performance.

Findings

The results demonstrate that the glass-wool-concrete cover offered the best performance at high temperature among the four types of materials. In the experiment with glass-wool-concrete cover, the furnace temperature reached 750°C, whereas the steel temperature reached only 100°C. The FEI of the coatings were calculated. Among the eight samples, glass wool-concrete cover also achieved the highest index value.

Research limitations/implications

The experimental work was performed using a limited number of specimens. Furthermore, the robustness of the indexing system needs to be evaluated with other materials and a wide range of heating rate and temperature. This study sets the foundation for future work.

Practical implications

The findings of this research may contribute to a better understanding of the performance of the materials used as fire protective coatings. This might be helpful for the researchers and practitioners in their design and implementation of legislation of fire safety codes.

Social implications

Understanding the performance of the fire protective coatings will help in evaluating the fire resistance capabilities of the materials to use for the structural steel members, which may protect collapses and disasters of buildings.

Originality/value

This paper deals with the performance of four types of materials, that can be used as fire protective coatings for structural steel members. Furthermore, the FEI explicitly indicated their performance with numerical values. In this study, the heating of the specimens was performed using a non-standard fire curve based on the concept that naturally occurring incidents of fire do not follow the standard fire curves.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2017

Sivakumar Kesawan and Mahen Mahendran

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF…

Abstract

Purpose

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF) walls. It also evaluates the applicability of commonly used critical hot flange temperature method to determine the fire resistance ratings (FRR) of different LSF walls.

Design/methodology/approach

The effects of important parameters such as stud section profiles and their dimensions, elevated temperature mechanical property reduction factors of the steel used, types of wall configurations and fire curves on the FRR of LSF walls were investigated. An extensive finite element analysis-based parametric study was conducted to evaluate their effects (finite element analysis – FEA). For this purpose, finite element models which were validated using the full-scale fire test results were used. Using the structural capacities obtained from FEAs, the load ratio versus FRR curves were produced for all the different LSF walls considered.

Findings

Stud depth and thickness significantly affected the fire performance of LSF walls because of the differences in temperature development pattern, thermal bowing deflections and the failure modes of stud. The FRR of LSF walls increased significantly when steel studs with higher elevated temperature mechanical property reduction factors were used. FRR significantly changed when realistic design fire curves were used instead of the standard fire curve. Furthermore, both the critical hot and average flange temperature methods were found to be unsuitable to predict the FRR of LSF walls.

Originality/value

The developed comprehensive fire performance data would facilitate the development of LSF walls with enhanced fire performance, and, importantly, it would facilitate and advance the successful applications of hollow flange channel section studs in LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 71