Search results
1 – 10 of 11Min Lin, Yi Wang and Guisheng Wu
The purpose of this paper is to find the specific competitive industries in emerging industries of strategic importance of each province in China in order to provide references…
Abstract
Purpose
The purpose of this paper is to find the specific competitive industries in emerging industries of strategic importance of each province in China in order to provide references for industrial cultivation and development.
Design/methodology/approach
This paper uses quantitative analysis methods on RCA and R&D efficiency.
Findings
Different provinces have specific competitive emerging industries of strategic importance. Taking biotechnology, equipment manufacturing, and new generation of information technology industry as examples, this paper finds: for the advanced equipment manufacturing industry, Shaanxi, Sichuan, Guizhou, Tianjin, Liaoning, Heilongjiang and Jiangxi provinces have obvious characteristics and relatively high R&D efficiency; for bio‐technology, Jiangsu, Henan, Jiangxi, Hunan, Zhejiang and Shandong provinces have obvious characteristics and relatively high R&D efficiency; and for the next generation of the information technology industry, Jiangsu, Guangdong, Fujian, Beijing, Tianjin and Shanghai provinces have obvious characteristics and relatively high R&D efficiency.
Research limitations/implications
This study is limited by lack of industrial comprehensiveness so that more statistical data about emerging industry of strategic importance is needed for more in‐depth analysis.
Practical implications
The identification of specific competitive emerging industry of strategic importance of each province will give managers and policy makers train of thought for the cultivation and development of strategic emerging industry and make future policies more targeted.
Originality/value
The paper contributes to the research on the differentiated cultivation and development tactics of strategic emerging industry by, respectively, finding out the specific competitive emerging industries of each province in China.
Details
Keywords
Yanmei Xu, Yanan Zhang, Ziqiang Wang, Xia Song, Zhenli Bai and Xiang Li
Unlike traditional industries, the e-cigarette is an epoch-making innovative product originating in China and occupying an absolute competitive advantage in the international…
Abstract
Purpose
Unlike traditional industries, the e-cigarette is an epoch-making innovative product originating in China and occupying an absolute competitive advantage in the international market. The traditional A-U model describes the laws and characteristics of technological innovation in developed countries. In contrast, the inverse A-U model depicts the process of “secondary innovation” in late-developing countries through digestion and absorption. This paper aims to find out that if the e-cigarette, as a “first innovation” industry in a late-developing country, conform to the A-U model or conform to the “inverse A-U model”.
Design/methodology/approach
This paper takes the patent data of e-cigarettes from 2004 to 2021 as the research object, and uses Python’s Jieba segment words to divide product innovation and process innovation, and then uses statistical analysis methods to conduct empirical analyses on these data.
Findings
Thus, an improved A-U model suitable for the e-cigarette industry is proposed. In this model, product innovation in the e-cigarette industry appeared earlier than process innovation, but the synchronous development of product and process innovation is not lagging. The improved A-U model in the e-cigarette industry is not only different from the traditional A-U model but also does not conform to the inverse A-U model.
Research limitations/implications
It is conducive to expanding and clarifying the theoretical contribution and applicable boundaries of the A-U model and has sparked thinking and exploration of the A-U model in e-cigarettes and emerging industries.
Practical implications
On this basis, suggestions on the development path and countermeasures of the e-cigarette industry are put forward.
Originality/value
Based on the e-cigarette industry, this paper takes patents as the research object and provides the method of dividing product innovation and process innovation, and proposes an A-U model suitable for the e-cigarette industry on this basis. By comparing the traditional A-U model with the inverse A-U model in latecomer countries, the background and causes of e-cigarette A-U model heterogeneity are analyzed from different stages and overall morphology. Based on this, the heterogeneity characteristics of e-cigarette innovation are summarized and sorted out.
Details
Keywords
Guisheng Gan, Donghua Yang, Yi-ping Wu, Xin Liu, Pengfei Sun, Daquan Xia, Huadong Cao, Liujie Jiang and Mizhe Tian
The impact strength of solder joint under high strain rate was evaluated by board level test method. However, the impact shear test of single solder bump was more convenient and…
Abstract
Purpose
The impact strength of solder joint under high strain rate was evaluated by board level test method. However, the impact shear test of single solder bump was more convenient and economical than the board level test method. With the miniaturization of solder joints, solder joints were more prone to failure under thermal shock and more attention has been paid to the impact reliability of solder joint. But Pb-free solder joints may be paid too much attention and Sn-Pb solder joints may be ignored.
Design/methodology/approach
In this study, thermal shock test between −55°C and 125°C was conducted on Sn-37Pb solder bumps in the BGA package to investigate microstructural evolution and growth mechanism of interfacial intermetallic compounds (IMCs) layer. The effects of thermal shock and ball diameter on the mechanical property and fracture behavior of Sn-37Pb solder bumps were discussed.
Findings
With the increase of ball size, the same change tendency of shear strength with thermal shock cycles. The shear strength of the solder bumps was the highest after reflow; with the increase of the number of thermal shocks, the shear strength of the solder bumps was decreased. But at the time of 2,000 cycles, the shear strength was increased to the initial strength. Minimum shear strength almost took place at 1,500 cycles in all solder bumps. The differences between maximum shear strength and minimum shear strength were 9.11 MPa and 16.83 MPa, 17.07 MPa and 15.59 MPa in φ0.3 mm and φ0.4 mm, φ0.5 mm and φ0.6 mm, respectively, differences were increased with increasing of ball size. With similar reflow profile, the thickness of IMC decreased as the diameter of the ball increased. The thickness of IMC was 2.42 µm and 2.17 µm, 1.63 µm and 1.77 µm with increasing of the ball size, respectively.
Originality/value
Pb-free solder was gradually used to replace traditional Sn-Pb solder and has been widely used in industry. Nevertheless, some products inevitably used a mixture of Sn-Pb and Pb-free solder to make the transition from Sn-Pb to Pb-free solder. Therefore, it was very important to understand the reliability of Sn-Pb solder joint and more further research works were also needed.
Details
Keywords
Guisheng Gan, Da-quan Xia, Xin Liu, Cong Liu, Hanlin Cheng, Zhongzhen Ming, Haoyang Gao, Dong-hua Yang and Yi-ping Wu
With continuous concerning on the toxic of element Pb, Pb-free solder was gradually used to replace traditional Sn-Pb solder. However, during the transition period from Sn-Pb to…
Abstract
Purpose
With continuous concerning on the toxic of element Pb, Pb-free solder was gradually used to replace traditional Sn-Pb solder. However, during the transition period from Sn-Pb to Pb-free solder, mixing of Sn-Pb and Pb-free is inevitable occurred in certain products, and in China where Sn-Pb solder was still used extensively in certain areas especially. Correspondingly, understanding reliability of Sn-Pb solder joints was very important, and further studies were needed.
Design/methodology/approach
Thermal shock test between −55°C and 125 °C was conducted on Sn-37Pb solder bumps in the BGA package to investigate the microstructure evolution and the growth mechanism of interfacial intermetallic compound (IMC) layer. The effects of thermal shock on the mechanical property and fracture behavior of Sn-37Pb solder bumps were discussed.
Findings
Pb-rich phase was coarsened and voids were increased at first; Pb-rich phase was refined and voids were decreased secondly with the increase of thermal shock cycles; the shear strength of solder bumps was slightly decreased after thermal shock, but was back up to 73.67MPa at 2,000 cycles; interfacial IMCs of solder bumps was from typical scallop-type into smooth, the composition of IMCs was from Cu6Sn5 into Cu6Sn5 and Cu3Sn after thermal shock with 1,500 and 2,000 cycles; 20.0 per cent of solder bumps at 1,500 cycles and 9.5 per cent of solder bumps at 2,000 cycles were failure respectively.
Originality/value
Compared with the board level test method, the impact shear test for the single solder bump is more convenient and economical and is actively pursued by the industries. The shear strength of solder bumps was slightly decreased after thermal shock, but was back up to 73.67 MPa at 2,000 cycles; 20.0 per cent of solder bumps at 1,500 cycles and 9.5 per cent of solder bumps at 2,000 cycles were failure.
Details
Keywords
Guisheng Gan, Shiqi Chen, Liujie Jiang, Cong Liu, Tian Huang, Peng Ma, Dayong Cheng and Xin Liu
This study aims to research properties of Cu/SAC0307 mixed solder balls/Cu joints with different Zn-particles content at low-temperature under ultrasonic assisted.
Abstract
Purpose
This study aims to research properties of Cu/SAC0307 mixed solder balls/Cu joints with different Zn-particles content at low-temperature under ultrasonic assisted.
Design/methodology/approach
A new method that 1µm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 µm were mixed to fill the joint and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted at low temperature.
Findings
The results showed that with a continuous increase in the Zn-particle content, the interfacial intermetallic compounds (IMCs) of the upper and lower interfaces of joints gradually changed from scallop-shaped Cu6Sn5 to wavy-shaped Cu5Zn8. Moreover, the IMC thickness of the upper/lower interface of joints first decreased and then increased with increasing Zn-particle content. The shear strengths of joints increased with Zn-particle content, the shear strength of joints went to a maximum of 29.76 MPa when the Zn-particle content was 40%, an increase of 62.6% compared to joints without Zn particles. However, as the Zn-particle content continued to increase, the shear strengths of the joints decreased. Additionally, when the Zn content increased to 50%, because the oxidation degree of Zn particles increased, the joints were mainly broken among Zn particles.
Originality/value
A new method that 1µm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 µm were mixed to fill the Cu/Cu joint at 180°C.
Details
Keywords
Guisheng Gan, Shiqi Chen, Liujie Jiang, Qianzhu Xu, Tian Huang, Dayong Cheng and Xin Liu
This study aims to evaluate the effect of thermal aging temperature on the properties of Cu/Al joints.
Abstract
Purpose
This study aims to evaluate the effect of thermal aging temperature on the properties of Cu/Al joints.
Design/methodology/approach
A new method in which 1 µm Zn-particles and SAC0307 with a particle size of 25–38 µm were mixed to fill the joint and successfully achieved the micro-joining of Cu/Al under ultrasonic-assisted at 200°C, and then, the effect of aging temperature on the properties of Cu/Al joints at different aging times was researched.
Findings
The results showed that the Cu interface intermetallic compounds (IMCs) had the same composition and had two layers with Cu5Zn8 near the Cu substrate and CuZn5 near the solder. As the aging time increased, CuZn5 gradually transformed to Cu5Zn8, and the thickness of the CuZn5 layer gradually decreased until CuZn5 disappeared completely. There was a Sn–Zn solid solution at the Al interface, and the composition of the Al interface of the Cu/Al joints did not change with changing temperature. The IMC thickness at the Cu interface of the joints continued to increase, and the shear strength of the Cu/Al joints decreased with increasing aging temperature and time. Compared with the as-received samples, the IMC thickness of the Cu interface of joints increased by 371.8% and the shear strength of the Cu/Al joints was reduced by 83.2% when the joints were aged at 150°C for 24 h. With an increase in aging temperature, the fracture mode of the Cu/Al joints changed from being between solder balls and Zn particles to between Zn particles.
Originality/value
With increasing aging temperature, the shear strengths of the Cu/SACZ/Al joints decreased at the same aging time, the shear strength of Cu/SACZ/Al joints at 150°C for 24h decreased by 83.2% compared with that of the as-received joints.
Details
Keywords
Guisheng Gan, Shi-qi Chen, Liujie Jiang, Cong Liu, Peng Ma, Tian Huang, Dayong Cheng and Xin Liu
This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.
Abstract
Purpose
This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.
Design/methodology/approach
A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the joint and successfully achieved micro-joining of Cu/Al under ultrasonic-assisted.
Findings
The results indicated that when the bonding temperature was 180°C, there was only one layer of CuZn5 intermetallic compounds (IMCs) at the Cu interface. However, when the bonding temperature was 190°C, 200°C and 210°C, the Cu interface IMCs had two layers: for one layer, the IMCs near the Cu substrate were Cu5Zn8 and for another layer, the IMCs near the solder were CuZn5. In addition, the thickness of the Cu interfacial IMCs increased with the bonding temperature. In particular, the thickness of IMCs at the Cu interface of the Cu/Al joints soldered at 210°C was 4.6 µm, which increased by 139.6% compared with that of the Cu/Al joints soldered at 180°C. However, there was no IMC layer at the Al interface, but there might be a Zn–Al solid solution layer. The shear strength of Cu/Al joints soldered at 180°C was only 15.01 MPa, but as the soldering temperature continued to increase, the shear strength of the Cu/Al joints increased rapidly. When the soldering temperature was 200°C, the shear strength of the Cu/Al joints reached the maximum of 38.07 MPa, which was 153.6% higher than that at 180°C. When the soldering temperature was 180°C, the fracture of Cu/Al joints was mainly on the Al side. However, when soldering temperature was 190°C, 200°C and 210°C, the fracture of Cu/Al joints was mainly broken in the Zn particles layer.
Originality/value
A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the Cu/Al joint at 210°C.
Details
Keywords
Tian Huang, Guisheng Gan, Cong Liu, Peng Ma, Yongchong Ma, Zheng Tang, Dayong Cheng, Xin Liu and Kun Tian
This paper aims to investigate the effects of different ultrasonic-assisted loading degrees on the microstructure, mechanical properties and the fracture morphology of…
Abstract
Purpose
This paper aims to investigate the effects of different ultrasonic-assisted loading degrees on the microstructure, mechanical properties and the fracture morphology of Cu/Zn+15%SAC0307+15%Cu/Al solder joints.
Design/methodology/approach
A new method in which 45 μm Zn particles were mixed with 15% 500 nm Cu particles and 15% 500 nm SAC0307 particles as solders (SACZ) and five different ultrasonic loading degrees were applied for realizing the soldering between Cu and Al at 240 °C and 8 MPa. Then, SEM was used to observe and analyze the soldering seam, interface microstructure and fracture morphology; the structural composition was determined by EDS; the phase of the soldering seam was characterized by XRD; and a PTR-1102 bonding tester was adopted to test the average shear strength.
Findings
The results manifest that Al–Zn solid solution is formed on the Al side of the Cu/SACZ/Al joints, while the interface IMC (Cu5Zn8) is formed on the Cu side of the Cu/SACZ/Al joints. When single ultrasonic was used in soldering, the interface IMC (Cu5Zn8) gradually thickens with the increase of ultrasonic degree. It is observed that the proportion of Zn or ZnO areas in solders decreases, and the proportion of Cu–Zn compound areas increases with the variation of ultrasonic degree. The maximum shear strength of joint reaches 46.01 MPa when the dual ultrasonic degree is 60°. The fracture position of the joint gradually shifts from the Al side interface to the solders and then to the Cu side interface.
Originality/value
The mechanism of ultrasonic action on micro-nanoparticles is further studied. By using different ultrasonic loading degrees to realize Cu/Al soldering, it is believed that the understandings gained in this study may offer some new insights for the development of low-temperature soldering methodology for heterogeneous materials.
Details
Keywords
Guisheng Gan, Shiqi Chen, Liujie Jiang, Zhaoqi Jiang, Cong Liu, Peng Ma, Dayong Cheng and Xin Liu
This study aims to evaluate the effect of thermal aging temperature on the properties of Cu/Cu joints.
Abstract
Purpose
This study aims to evaluate the effect of thermal aging temperature on the properties of Cu/Cu joints.
Design/methodology/approach
A new method that 1 um Zn-particles and Sn-0.3Ag-0.7Cu (SAC0307) with a particle size of 25–38 µm were mixed to fill the joint and successfully achieved the micro-joining of Cu/Cu under ultrasonic-assisted at low-temperature, and then the effect of thermal aging temperature on the properties of Cu/Cu joints was researched.
Findings
The composition of the intermetallic compounds (IMCs) on the upper and lower interfaces of Cu/SACZ/Cu joints remained unchanged, which was Cu5Zn8 in aging process, and the thickness of the IMCs on the upper and lower interfaces of the Cu/SACZ/Cu joints increased accordingly. Compared with the as-received joints, the thickness of the upper and lower interfaces IMCs of the soldering aged time for 24 h increased by 404.7% and 505.5% at 150ºC, respectively. The IMCs formation tendency and the IMCs growth rate of the lower interface are larger than those of the upper interface because the soldering seam near the IMCs at the upper and lower interfaces of the as-received joints were mostly white SAC0307 balls black Zn-particles, respectively. The growth activation energy of IMCs in the upper and lower interfaces is about 89.21 and 55.11 kJ/mol, respectively. Under the same aging time, with the increase of the aging temperature, the shear strength of Cu/SACZ/Cu joints did not change significantly at first before 150ºC. When the aging temperature reached 150ºC, the shear strength of the joints decreased significantly; the shear strength of the joints was the smallest at 150ºC for 24 h, which was 39.4% lower than that of the as-received joints because the oxidation degree of Zn particles in the joint with the increase of aging temperature and time.
Originality/value
Cu/Cu joints were successfully achieved under ultrasonic-assisted at low-temperature.
Details
Keywords
Mohammed Talawa and Nemer Badwan
This paper uses test panel data for the biggest companies listed on the boards of directors of the Palestine Stock Exchange from 2016 to 2022 and will focus on the relationship…
Abstract
Purpose
This paper uses test panel data for the biggest companies listed on the boards of directors of the Palestine Stock Exchange from 2016 to 2022 and will focus on the relationship between the corporate governance index, accounting conservatism, and the comprehensive index of corporate governance.
Design/methodology/approach
The relationship between corporate governance and accounting conservatism is experimentally investigated for its impact on the likelihood of stock price breakdown and decline among companies listed on the Palestine Stock Exchange between 2016 and 2022, using a mixed utilities approach.
Findings
The findings demonstrated the adverse correlation between corporate governance, accounting conservatism, and stock prices. Higher levels of corporate governance can effectively reduce the likelihood of future stock price increases, while conservative accounting policies can effectively prevent stock price collapses in these listed companies. Higher levels of corporate governance can greatly lessen the detrimental effect of accounting conservatism on the likelihood of future stock price breakdowns and declines. Both accounting conservatism and corporate governance have substitution effects in decreasing the danger of stock price collapse.
Research limitations/implications
The limitations of the current research are that higher levels of corporate governance can significantly reduce the harmful effect of accounting conservatism on the probability of stock price breakdown and decline in the future on the study sample used, and these results cannot be generalized to all company stocks that were excluded in this study. The last research limitation is that the sample size of this study is somewhat small, and therefore the effects of the results cannot be used on all unlisted companies, and they cannot be generalized to all of these companies except only to companies listed on the Palestine Stock Exchange.
Practical implications
Our findings have interesting managerial and policy implications. Listed firms should first strengthen external audit oversight, improve the method of disclosing accounting information, and improve the system architecture to raise the level of accounting conservatism. Moreover, it is imperative to enhance and improve the ownership structure of publicly traded firms, construct a robust mechanism for replacing shareholders, fortify the duties of the board of directors, proficiently fulfil the role of independent directors, and develop and refine the internal and external framework for corporate governance.
Originality/value
This study provides insights about reducing the probability of a stock market breakdown and collapse from two sides: enhancing corporate governance, improving accounting conservatism, enhancing the reliability and integrity of disclosure, and growing the number of sustainable disclosures. These suggestions can also be used as a template for Palestine's capital market's gradual and sustainable expansion.
Details