Search results

1 – 10 of 874
Article
Publication date: 28 June 2019

Tomasz Wandowski, Pawel Malinowski and Wieslaw Ostachowicz

The purpose of this paper is to present the results of experimental analysis of the elastic-guided wave mode conversion phenomenon in glass fiber-reinforced polymers. The results…

Abstract

Purpose

The purpose of this paper is to present the results of experimental analysis of the elastic-guided wave mode conversion phenomenon in glass fiber-reinforced polymers. The results of this research presented in this paper are strictly focused on S0/A0’ mode conversion phenomenon caused by discontinuities in the form of circular Teflon inserts (artificial delaminations) and impact damage. Results of this research could be useful in problems of damage detection and localization.

Design/methodology/approach

In the research, guided waves are excited using a piezoelectric transducer and sensed in a non-contact manner using a scanning laser Doppler vibrometer. Full wavefield measurements are analyzed. Analysis of the influence of investigated discontinuities on S0/A0’ mode conversion is based on the elastic wave mode filtration in frequency-wavenumber domain. Mode filtration process allows us to remove the effects of the propagation of unwanted type of mode in forward or backward direction. Effects of S0/A0’ mode conversion are characterized by a mode conversion indicator (MCI) based on the amplitude of new mode A0’ and the amplitude of incident S0 mode.

Findings

It was noticed that the magnitude of MCI depends on the depth at which the Teflon inserts were located for all analyzed excitation frequencies and diameters of inserts (10 and 20 mm). The magnitude of MCI also increases with increasing impact energies. The S0/A0’ mode conversion phenomenon could be utilized for the detection of surface and internal located discontinuities.

Originality/value

This paper presents the original results of this research related to the influence of discontinuity location with respect to the sample thickness and severity of discontinuity on S0/A0’ mode conversion.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health…

Abstract

Purpose

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health assessment methodology, magnificent extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of guided elastic waves through the noisy signal is investigated in the present analysis using matched filtering technique which “sniffs” the signal buried in noise and most favorable mother wavelet based denoising methods. The optimal wavelet function is selected using Shannon’s entropy criterion and verified by the analysis of root mean square error of the filtered signal.

Findings

Wavelet matched filter method, a newly developed filtering technique in this work and which is a combination of the wavelet transform and matched filtering method, significantly improves the accuracy of the filtered signal and identifies relatively small damage, especially in enormously noisy data. A comparative study is also performed using the statistical tool to know acceptability and practicability of filtered signals for guided wave application.

Practical implications

The proposed filtering techniques can be utilized in online monitoring of civil and mechanical structures. The algorithm of the method is easy to implement and found to be successful in accurately detecting damage.

Originality/value

Although many techniques have been developed over the past several years to suppress random noise in Lamb wave signal but filtration of interferences of wave modes and boundary reflection is not in a much matured stage and thus needs further investigation. The present study contains detailed information about various noise filtering methods, newly developed filtration technique and their efficacy in handling the above mentioned issues.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2021

Assunta Sorrentino, Fulvio Romano and Angelo De Fenza

The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on…

Abstract

Purpose

The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed.

Design/methodology/approach

The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics.

Findings

The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage.

Originality/value

The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts’ manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research’s activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 March 2024

Liang Hu, Chengwei Liu, Rui Su and Weiting Liu

In a coaxial ultrasonic flow sensor (UFS), wall thickness is a vital parameter of the measurement tube, especially those with small inner diameters. The paper aims to investigate…

Abstract

Purpose

In a coaxial ultrasonic flow sensor (UFS), wall thickness is a vital parameter of the measurement tube, especially those with small inner diameters. The paper aims to investigate the influence of wall thickness on the transient signal characteristics in an UFS.

Design/methodology/approach

First, the problem was researched experimentally using a series of measurement tubes with different wall thicknesses. Second, a finite element method–based model in the time domain was established to validate the experimental results and further discussion. Finally, the plane wave assumption and oblique incident theory were used to analyze the wave propagation in the tube, and an idea of wave packet superposition was proposed to reveal the mechanism of the influence of wall thickness.

Findings

Both experimental and simulated results showed that the signal amplitude decreased periodically as the wall thickness increased, and the corresponding waveform varied dramatically. Based on the analysis of wave propagation in the measurement tube, a formula concerning the phase difference between wave packets was derived to characterize the signal variation.

Originality/value

This paper provides a new and explicit explanation of the influence of wall thickness on the transient signal in a co-axial UFS. Both experimental and simulated results were presented, and the mechanism was clearly described.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health…

Abstract

Purpose

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health assessment methodology, very good extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of multimode Lamb waves through the noisy signal is investigated in the present analysis using matched filtering technique and wavelet denoising methods. Using Shannon’s entropy criterion, the optimal wavelet function is selected and verification is made via the analysis of root mean square error of filtered signal.

Findings

The authors propose wavelet matched filter method, a combination of the wavelet transform and matched filtering method, which can significantly improve the accuracy of the filtered signal and identify relatively small damage, especially in enormously noisy data. Correlation coefficient and root mean square error are additionally computed for performance evaluation of the filters.

Originality/value

The present study provides detailed information about various noise filtering methods and a first attempt to apply the combination of the different techniques in signal processing for the structural health monitoring application. A comparative study is performed using the statistical tool to know whether filtered signals obtained through three different methods are acceptable and practicable for guided wave application or not.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 May 2018

Kuanfang He, Wei Lu, Xiangnan Liu, Siwen Xiao and Xuejun Li

This paper aims to study acoustic emission (AE) propagation characteristics by a crack under a moving heat source, which mainly provides theoretical basis and method for the…

133

Abstract

Purpose

This paper aims to study acoustic emission (AE) propagation characteristics by a crack under a moving heat source, which mainly provides theoretical basis and method for the actual crack detection during welding process.

Design/methodology/approach

The paper studied the AE characteristics in welding using thermoelastic theory, which investigates the dynamical displacement field caused by a crack and the welding heating effect. In the calculation model, the crack initiation and extension are represented by moment tensor as the AE source, and the welding heat source is the Gauss heat flux distribution. The extended finite element method (XFEM) is implemented to calculate and solve the AE response of a thermoelastic plate with a crack during the welding heating effect. The wavelet transform is applied to the time–frequency analysis of the AE signals.

Findings

The paper provides insights about the changing rule of the acoustic radiation patterns influenced by the heating effect of the moving heat source and the AE signal characteristics in thermoelastic plate by different crack lengths and depths. It reveals that the time–frequency characteristics of the AE signals from the simulation are in good agreement with the theoretical ones. The energy ratio of the antisymmetric mode A0 to symmetric mode S0 is a valuable quantitative inductor to estimate the crack depth with a certain regularity.

Research limitations/implications

This paper mainly discusses the application of XFEM to calculate and analyze thermoelastic problems, and has presented few cases based on a specified configuration. Further work will focus on the calculation and analysis under different plate configurations and conditions, which is to obtain more interesting and general conclusions for guiding practice.

Originality/value

The paper is a successful application of XFEM to solve the problem of AE response of a crack in the dynamic welding inhomogeneous heating effect. The paper provides an effective way to obtain the AE signal characteristics in monitoring the welding crack.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 April 2018

Rajendran Selvamani

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid…

Abstract

Purpose

The purpose of this paper is to study the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid using the Fourier expansion collocation method.

Design/methodology/approach

A mathematical model is developed for the analytical study on a transversely isotropic thermo-piezoelectric polygonal cross-sectional fiber immersed in fluid using a linear form of three-dimensional piezothermoelasticity theories. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the Fourier expansion collocation method (FECM) at the irregular boundary surfaces of the polygonal cross-sectional fiber. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is evident that the analytical formulation of thermo-piezoelectric interactions in a polygonal cross-sectional fiber contact with fluid is not discussed by any researchers. Also, in this study, a polygonal cross-section is used instead of the traditional circular cross-sections. So, the analytical solutions of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid are studied using the FECM. The dispersion curves for non-dimensional frequency, phase velocity and attenuation coefficient are presented graphically for lead zirconate titanate (PZT-5A) material. The present analytical method obtained by the FECM is compared with the finite element method which shows a good agreement with present study.

Originality/value

This paper contributes the analytical model to find the solution of transversely isotropic thermo-piezoelectric interactions in a polygonal cross-sectional fiber immersed in fluid. The dispersion curves of the non-dimensional frequency, phase velocity and attenuation coefficient are more prominent in flexural modes. Also, the surrounding fluid on the various considered wave characteristics is more significant and dispersive in the hexagonal cross-sections. The aspect ratio (a/b) of polygonal cross-sections is critical to industry or other fields which require more flexibility in design of materials with arbitrary cross-sections.

Article
Publication date: 12 July 2013

Sascha Duczek and Ulrich Gabbert

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled…

Abstract

Purpose

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled structures are prone to acoustic emissions, or in shape control approaches to suppress unwanted vibrations. Also in Lamb wave based health monitoring systems piezoelectric patches are applied to excite and to receive ultrasonic waves. The purpose of this paper is to develop a higher order finite element with piezoelectric capabilities in order to simulate smart structures efficiently.

Design/methodology/approach

In the paper the development of a new fully three‐dimensional piezoelectric hexahedral finite element based on the p‐version of the finite element method (FEM) is presented. Hierarchic Legendre polynomials in combination with an anisotropic ansatz space are utilized to derive an electro‐mechanically coupled element. This results in a reduced numerical effort. The suitability of the proposed element is demonstrated using various static and dynamic test examples.

Findings

In the current contribution it is shown that higher order coupled‐field finite elements hold several advantages for smart structure applications. All numerical examples have been found to agree well with previously published results. Furthermore, it is demonstrated that accurate results can be obtained with far fewer degrees of freedom compared to conventional low order finite element approaches. Thus, the proposed finite element can lead to a significant reduction in the overall numerical costs.

Originality/value

To the best of the author's knowledge, no piezoelectric finite element based on the hierarchical‐finite‐element‐method has yet been published in the literature. Thus, the proposed finite element is a step towards a holistic numerical treatment of structural health monitoring (SHM) related problems using p‐version finite elements.

Details

Engineering Computations, vol. 30 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2015

Rajendran Selvamani and Palaniyandi Ponnusamy

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in a generalized piezothermelastic rotating bar of circular cross-section by using Lord-Shulman (LS) and Green-Lindsay (GL) theory of thermoelasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the thermally insulated/isothermal and electrically shorted/charge free boundary conditions prevailing at the surface of the circular cross-sectional bar. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

In order to include the time requirement for the acceleration of the heat flow and the coupling between the temperature and strain fields, the analytical terms have been derived for the non-classical thermo-elastic theories, LS and GL theory. The computed physical quantities such as thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency have been presented in the form of dispersion curves. From the graphical patterns of the structure, the effect of thermal relaxation times and the rotational speed as well as the anisotropy of the of the material on the various considered wave characteristics is more significant and dominant in the flexural modes of vibration. The effect of such physical quantities provides the foundation for the construction of temperature sensors, acoustic sensor and rotating gyroscope.

Originality/value

In this paper, the influence of thermal relaxation times and rotational speed on the wave number with thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency has been observed and are presented as dispersion curves. The effect of thermal relaxation time and rotational speed on wave number for the case of generalized piezothermoelastic material of circular cross-section was never reported in the literature. These results are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 874