Search results

1 – 3 of 3
Article
Publication date: 5 April 2021

Grzegorz Henryk Kopecki

Indirect (fly-by-wire) control systems for general aviation aircraft and unmanned aircraft vehicles (UAV) control systems enable the decoupling of control surfaces. This method of…

Abstract

Purpose

Indirect (fly-by-wire) control systems for general aviation aircraft and unmanned aircraft vehicles (UAV) control systems enable the decoupling of control surfaces. This method of aircraft control is different from classical approach. The purpose of the article is to show the aircraft can be controlled even if the control control surfaces are blocked.

Design/methodology/approach

The concept discussed here relies on model reference adaptive control. The approach presented requires modifications of aircraft linearized model. In this paper, an example of roll angle control is shown.

Findings

During simulations the system worked properly with control surfaces partially blocked, if the blockage appeared close to neutral position. Exemplary simulations are shown in the text.

Practical implications

The solution presented was implemented on a UAV autopilot. Hardware in the loop simulations were performed, which shows the potential of practical usage.

Originality/value

Aircraft control, as discussed in this paper, gives the possibility of aircraft control and stable flight before a fault is detected, which increases the safety level.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 July 2016

Pawel Rzucidlo, Grzegorz Henryk Kopecki, Klaus deGroot, Anna Kucaba-Pietal, Robert Smusz, Mariusz Szewczyk and Marek Szumski

This paper aims to describe an idea for an integration process and tests of flight parameters measurement system, which supports infrared thermography (IRT) boundary layer mapping.

203

Abstract

Purpose

This paper aims to describe an idea for an integration process and tests of flight parameters measurement system, which supports infrared thermography (IRT) boundary layer mapping.

Design/methodology/approach

The study of flow changes in the boundary layer with the use of IRT requires registration of the thermal images of the selected area of a wing or the fuselage, as well as synchronous recording of flight parameters. These tasks were realized by the supplementary measurement system mounted on the PW-6U glider. Two examples of the determination of the laminar-turbulent transition areas on the left wing of a PW-6U glider are also presented in the paper.

Findings

Optical methods can be used in several research areas, for example, aerodynamics and strength analysis. For instance, the measurement of the infrared radiation from surfaces with the use of IRT can be used for the measurement, with high accuracy, of surface temperature distribution. Moreover, the thermography is used for the analysis of the boundary layer. Performed in-flight experiments confirm the possibility of practical usage of the IRT method even on the board of a glider.

Practical implications

The use of optical methods will, in many cases, be less expensive than assembly of an additional measurement and data acquisition systems. Implementation of optical methods for industrial purposes has many advantages, and, hence, they will probably become very common in the future.

Originality/value

The study introduces advanced measurement and visualization techniques in general aviation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 October 2018

Mariusz Oszust, Tomasz Kapuscinski, Dawid Warchol, Marian Wysocki, Tomasz Rogalski, Jacek Pieniazek, Grzegorz Henryk Kopecki, Piotr Ciecinski and Pawel Rzucidlo

This paper aims to present a vision-based method for determination of the position of a fixed-wing aircraft that is approaching a runway.

Abstract

Purpose

This paper aims to present a vision-based method for determination of the position of a fixed-wing aircraft that is approaching a runway.

Design methodology/approach

The method determines the location of an aircraft based on positions of precision approach path indicator lights and approach light system with sequenced flashing lights in the image captured by an on-board camera.

Findings

As the relation of the lighting systems to the touchdown area on the considered runway is known in advance, the detected lights, seen as glowing lines or highlighted areas, in the image can be mapped onto the real-world coordinates and then used to estimate the position of the aircraft. Furthermore, the colours of lights are detected and can be used as auxiliary information.

Practical implications

The presented method can be considered as a potential source of flight data for autonomous approach and for augmentation of manual approach.

Originality/value

In this paper, a feasibility study of this concept is presented and primarily validated.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 3 of 3