Search results

1 – 10 of 446
Article
Publication date: 25 November 2020

Nibas Apu and Ravi Sinha

Increasing awareness of the society and complying with design requirements of building codes for seismic safety of structures and inhabitants during severe earthquakes are the…

Abstract

Purpose

Increasing awareness of the society and complying with design requirements of building codes for seismic safety of structures and inhabitants during severe earthquakes are the primary purpose of seismic analysis. This study aims to present the variability in seismic fragility functions for frames of different heights for the most vulnerable condition of structure using nonlinear time history analysis.

Design/methodology/approach

A total of 4, 8 and 20 stories reinforced concrete (RC) moment-resisting two-dimensional frames are considered for this study. Ground motions (GM) are selected as per the conditional mean spectrum and these are conditioned on a target spectral acceleration at the concern time period. RC frames are designed and detailed as per Indian standards. A concentrated plasticity approach is adopted for non-linear analytical modeling of the RC frames. Deterministic capacity limit states in terms of maximum inter-story drift ratio are considered for different damage states. Fragility functions have been derived following a lognormal distribution from incremental dynamic analysis curves. Finally, the maximum likelihood estimation of the response is obtained for fitting curves with observed fragility.

Findings

The fragility functions of the three structures reflect that under critical or extreme conditions of GM the taller buildings have higher fragility than the shorter buildings for each level of limit states even though both are designed to meet their code-level design forces.

Research limitations/implications

The study is conducted on the extreme scenario of GM conditioned on the fundamental time period of each building, whereas comparison can be developed by selecting various methodologies of GM set. The probabilistic capacity model can be developed for future studies to check the fragility variation with deterministic and probabilistic capacity.

Originality/value

The investigation endeavors to present a comprehensive fragility assessment framework by analytical method. The outcome will be useful in the development of a disaster management strategy for new or old buildings and the response of seismic force with a variation of the building’s height. The findings will also be useful for updating the earthquake-resistant building codes for the new building construction in a similar context.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 12 no. 4
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 May 2019

J. Esfandiari and Y. Khezeli

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames…

Abstract

Purpose

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames exhibit a design problem arising from the unbalanced vertical force generated by the lower story braces when one of them buckles. This adverse effect can be mitigated by adding zipper columns or vertical members connecting the intersection points of the braces above the first floor.

Design/methodology/approach

This paper critically evaluates over strength, ductility and response modification factors of these structures. To achieve the purpose of this research, several buildings of different stories are considered. Static pushover analysis, linear dynamic analysis and nonlinear incremental dynamic analysis are performed by OpenSees software concerning ten records of past earthquakes.

Findings

Also, ductility factor, over strength factor and response modification factor, has been calculated for zipper-braced frames system. The values of 3.5 and 5 are suggested for response modification factor in ultimate limit state and allowable stress methods, respectively.

Originality/value

The fragility curves were plotted for the first time for such kind of braces. It should be mentioned that these curves play significant roles in evaluating seismic damage of buildings.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 August 2021

Amit Chandra, Anjan Bhowmick and Ashutosh Bagchi

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake…

Abstract

Purpose

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake uniform and traveling fires (PEF). The primary objective is to investigate the effects of seismic residual deformation on the structure's performance in horizontally traveling fires. The traveling fire methodology, unlike conventional fire models, considers a spatially varying temperature environment.

Design/methodology/approach

Multi-step finite element simulations were carried out on undamaged and damaged frames to provide insight into the effects of the earthquake-initiated fires on the local and global behavior of SMRF. The earthquake simulations were conducted using nonlinear time history analysis, whereas the structure in the fire was investigated by sequential thermal-structural analysis procedure in ABAQUS. The frame was subjected to a suite of seven ground motions. In total, four horizontal traveling fire sizes were considered along with the Eurocode (EC) parametric fire for a comparison. The deformation history, axial force and moment variation in the critical beams and columns of affected compartments in the fire heating and cooling regimes were examined. The global structural performance in terms of inter-story drifts in FO and PEF scenarios was investigated.

Findings

It was observed that the larger traveling fires (25 and 48%) are more detrimental to the case study frame than the uniform EC parametric fire. Besides, no appreciable difference was observed in time and modes of failure of the structure in FO and PEF scenarios within the study's parameters.

Originality/value

The present study considers improved traveling fire methodology as an alternate design fire for the first time for the PEF performance of SMRF. The analysis results add to the much needed database on structures' performance in a wide range of fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 December 2020

Abdellah Boudina and Malek Hammoutene

This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude…

Abstract

Purpose

This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude, epicentral distance and type of soil. This study is necessary for the non-linear dynamic analysis of structures in regions where real seismic records are not available.

Design/methodology/approach

First, a stochastic iterative method is used to estimate the spectral densities of acceleration power from the respective target response spectra. Thereafter, based on the superposition of seismic waves, a subsequent iterative procedure, which implicitly takes into account the non-stationary character of temporal intensity content of strong ground motions, is developed to synthesize, from these power spectral density, the corresponding acceleration time histories. The phase contents of the ground acceleration samples, thus obtained, are generated using a probability density function of phase derivatives with characteristic parameters estimated from seismological considerations. When based on seismic codes spectrum compatible criteria, this procedure can be used to generate strong ground motions for structural design.

Findings

The results found show that the forms of acceleration of the target and the simulated signals have similar characteristics in terms of strong motion durations, the peak ground acceleration values, corresponding time of occurrence and also, the corresponding cumulative energy functions follow practically the same pattern of variations.

Originality/value

The aim of this study is to generate seismic accelerograms compatible with regulatory spectra by the composition of the three acceleration duration segments based on environmental parameters (magnitude, epicentral distance and type of soil) and which subsequently serves to control the time envelope of the generated signals, and therefore the random generation of phase derivatives, which has not been previously treated.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2004

Georgios I. Zekos

Investigates the differences in protocols between arbitral tribunals and courts, with particular emphasis on US, Greek and English law. Gives examples of each country and its way…

9511

Abstract

Investigates the differences in protocols between arbitral tribunals and courts, with particular emphasis on US, Greek and English law. Gives examples of each country and its way of using the law in specific circumstances, and shows the variations therein. Sums up that arbitration is much the better way to gok as it avoids delays and expenses, plus the vexation/frustration of normal litigation. Concludes that the US and Greek constitutions and common law tradition in England appear to allow involved parties to choose their own judge, who can thus be an arbitrator. Discusses e‐commerce and speculates on this for the future.

Details

Managerial Law, vol. 46 no. 2/3
Type: Research Article
ISSN: 0309-0558

Keywords

Article
Publication date: 1 August 2000

George G. Kapadoukas and Andrew Self

An essential part of the validation process of flight simulators has been the comparison of the simulator and aeroplane flight modes of motion for set manoeuvres. A…

855

Abstract

An essential part of the validation process of flight simulators has been the comparison of the simulator and aeroplane flight modes of motion for set manoeuvres. A simulator‐to‐flight match is essential for the full range of manoeuvres, both in‐flight and on‐the‐ground, if the simulator is to be used for all usual and unusual scenarios. This is particularly true in ground level manoeuvres where data are not available and pilots need to be trained for situations that are too dangerous to practise in real aircraft and too important to neglect. Aircraft in‐flight modes are used to verify simulator behaviour. However, ground‐contact – an important part of pilot training – modes are not used to verify fidelity. A full systems approach is discussed and a taxonomy of in‐flight and ground‐contact modes provided for the full range of operations, from brakes‐off through taxiing, take‐off, landing and parking. The full taxonomy of modes is needed to ensure that the dynamic behaviour of the simulator is realistic for all in‐flight and ground‐contact scenarios and thereby ensure that the training is realistic for the full range of conventional and dangerous manoeuvres.

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 March 1992

Dorothy Tao and Patricia Ann Coty

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a…

Abstract

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a remote danger. But instantaneous television transmission from the interrupted World Series game and frightening images of the collapsed Cypress Viaduct and the burning Marina district transformed this incident from a distant disaster into a phenomenon that touched us all. The Loma Prieta earthquake was followed in December 1990 by the inaccurate but widely publicized New Madrid earthquake prediction. Despite its inaccuracy, this prediction alerted the public to the fact that the largest earthquake ever to have occurred in the United States occurred not in California or Alaska, but in Missouri, and that a large earthquake could occur there again. Americans are discovering that few places are immune to the possibility of an earthquake.

Details

Reference Services Review, vol. 20 no. 3
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 6 September 2019

Gursel Serpen and Jayanta Debnath

The purpose of this paper is to present design and performance evaluation through simulation of a parking management system (PMS) for a fully automated, multi-story, puzzle-type…

Abstract

Purpose

The purpose of this paper is to present design and performance evaluation through simulation of a parking management system (PMS) for a fully automated, multi-story, puzzle-type and robotic parking structure with the overall objective of minimizing customer wait times while maximizing the space utilization.

Design/methodology/approach

The presentation entails development and integration of a complete suite of path planning, elevator scheduling and resource allocation algorithms. The PMS aims to manage multiple concurrent requests, in real time and in a dynamic context, for storage and retrieval of vehicles loaded onto robotic carts for a fully automated, multi-story and driving-free parking structure. The algorithm suite employs the incremental informed search algorithm D* Lite with domain-specific heuristics and the uninformed search algorithm Uniform Cost Search for path search and planning. An optimization methodology based on nested partitions and Genetic algorithm is adapted for scheduling of a group of elevators. The study considered a typical business day scenario in the center of a metropolis.

Findings

The simulation study indicates that the proposed design for the PMS is able to serve concurrent storage-retrieval requests representing a wide range of Poisson distributed customer arrival rates in real time while requiring reasonable computing resources under realistic scenarios. The customer waiting times for both storage and retrieval requests are within acceptable bounds, which are set as no more than 5 min, even in the presence of up to 100 concurrent storage and retrieval requests. The design is able to accommodate a variety of customer arrival rates and presence of immobilized vehicles which are assumed to be scattered across the floors of the structure to make it possible for deployment in real-time environments.

Originality/value

The intelligent system design is novel as the fully automated robotic parking structures are just in the process of being matured from a technology standpoint.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 January 1975

Knight's Industrial Law Reports goes into a new style and format as Managerial Law This issue of KILR is restyled Managerial Law and it now appears on a continuous updating basis…

Abstract

Knight's Industrial Law Reports goes into a new style and format as Managerial Law This issue of KILR is restyled Managerial Law and it now appears on a continuous updating basis rather than as a monthly routine affair.

Details

Managerial Law, vol. 18 no. 1
Type: Research Article
ISSN: 0309-0558

1 – 10 of 446