Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

150

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 July 2023

Badegül Tunçay, Harun Çuğ, Tansel Tunçay, Dursun Özyürek and Katarzyna Cesarz-Andraczke

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Abstract

Purpose

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Design/methodology/approach

It was pre-formed under a protective atmosphere at 900 °C under a force of 45 MPa and sintered for 1 h under 10–6 Mbar in an atmosphere-controlled heat treatment furnace at 1,100 °C. The relationship between microstructural properties, SEM, XRD, density, microhardness and corrosion behaviour of pre-alloyed NiTi alloys produced by two different methods with the production method was investigated.

Findings

As a result of the studies, TiO, NiTi, NiTi2 and Ni3Ti intermetallics were determined in XRD examinations. The best surface roughness was observed in the mechanically milled (MM’ed) pre-alloyed NiTi alloy compared to the pre-alloyed NiTi alloy mixed with turbula. The corrosion tests performed in 3.5% NaCl solution determined that the MM’ed pre-alloyed NiTi alloy had better corrosion resistance than the pre-alloyed NiTi alloy mixed with turbula. Pitting corrosion was visualized in the SEM images taken from the corrosion surfaces.

Originality/value

Two different PM methods produced pre-alloyed NiTi powders, and the effects of these methods on the mechanical and corrosion resistance of NiTi alloys were systematically investigated for the first time.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Case study
Publication date: 11 December 2023

Ijaz Yusuf

Upon completion of the case study, the students will be able to find the challenges and underlying structures that cause the problem; the students will be able to identify the…

Abstract

Learning outcomes

Upon completion of the case study, the students will be able to find the challenges and underlying structures that cause the problem; the students will be able to identify the dynamic variables and develop the interconnection and interlinkages among the time-delayed variables to build the story of the business case; the students could develop the block diagram and could build the system dynamics model using the simulation software STELLA, and if they do not have the simulation software, even then they could have a mental model to understand the problem well; the system dynamics students can design the policies to make the system better behaved and recommend solutions; and the students could make mind maps and develop the mental model and could recommend solutions and way forward to overcome the challenges and solve the issues.

Case overview/synopsis

Tradeasia is a small-scale manufacturing firm that had started its business activities near Sundar Industrial Estate, Raiwind, in September 2007. The company’s prime focus was to buy the potato starch from chips manufacturing companies and, then, extract the potato starch from the waste potato using its own machinery and sell it as a sizing agent to textile mills. Quality characteristics in terms of better millage and enhanced gullibility made it compatible with Rafhan corn-based starch. The major challenge linked to potato starch was its degree of wetness; the potato starch either extracted from rotten potato or procured from the potato chips manufacturing companies had a high degree of wetness and moisture content. Wet potato starch sometimes had more than 60% moisture content, which was really a challenge. Owing to the high degree of wetness, the wet starch was prone to fungus growth, and within hours, the fungus created toxins if it was not dried immediately, and then after 24 h, toxins acquired a black colour, and they became hardened like pebbles. The starch then was unusable even for sizing purposes for textile products. Reduction in the degree of wetness was really a big challenge and demanded prompt action and high productivity of the operational staff to make that product dry for sale purposes. This was the biggest challenge that ended up in huge inventories of wet starch. Capacity constraints and operational inefficiency killed the company’s productivity and affected the company’s profit.

Complexity academic level

This case study is written and developed for MBA and MS-level supply chain students of the system dynamics course or those studying management of supply chain complexities. This case study discusses the operational challenges while running the business; huge inventories, capacity constraints and inefficiency in production operations were the challenges associated with almost all manufacturing industries. This case study discussed not only why such challenges are appearing in the business but also the solution that resided in the wisdom shared by the employees in the board meeting. An integrated system dynamics model could be used to design the policies to overcome such challenges. Even the block diagram of the model and causal loop diagram could help to conceptualize the problem and explore the way forward.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 7: Management science.

Details

Emerald Emerging Markets Case Studies, vol. 13 no. 4
Type: Case Study
ISSN: 2045-0621

Keywords

Open Access
Article
Publication date: 27 September 2023

Markus Brummer, Karl Jakob Raddatz, Matthias Moritz Schmitt, Georg Schlick, Thomas Tobie, Rüdiger Daub and Karsten Stahl

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive…

Abstract

Purpose

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive manufacturing technologies are the high degree of design freedom and the cost-effective implementation of lightweight structures. This could be profitable for gears with increased power density, combining reduced mass with considerable material strength. Current research on additively manufactured gears is focused on developing lightweight structures but is seldom accompanied by simulations and even less by mechanical testing. There has been very little research into the mechanical and material properties of additively manufactured gears. The purpose of this study is to investigate the behavior of lightweight structures in additively manufactured gears under static loads.

Design/methodology/approach

This research identifies the static load-carrying capacity of helical gears with different lightweight structures produced by PBF-LB/M with the case hardening steel 16MnCr5. A static gear loading test rig with a maximum torque at the pinion of T1 = 1200 Nm is used. Further focus is set on analyzing material properties such as the relative density, microstructure, hardness depth profile and chemical composition.

Findings

All additively manufactured gear variants show no failure or plastic deformation at the maximum test load. The shaft hub connection, the lightweight hub designs and the gearing itself are stable and intact regarding their form and function. The identified material characteristics are comparable to conventionally manufactured gears (wrought and machined), but also some particularities were observed.

Originality/value

This research demonstrates the mechanical strength of lightweight structures in gears. Future research needs to consider the dynamic load-carrying capacity of additively manufactured gears.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 20 November 2023

Esmir Demaj and Denis Mehillaj

Lean manufacturing, a philosophy that revolutionized the manufacturing industry, is often linked to the Toyota Production System (TPS). At the core of a lean company, one can…

Abstract

Lean manufacturing, a philosophy that revolutionized the manufacturing industry, is often linked to the Toyota Production System (TPS). At the core of a lean company, one can observe proper implementation of lean manufacturing tools and practices such as just-in-time, work teams, cellular manufacturing, lean layout, etc. The goal of lean production is to minimize the waste producing activities while offering the same or enhanced quality to customers.

The aim of this research is to investigate the implementation degree of lean manufacturing and its tools and practices focusing on the case of an SME in Albania as a concrete example. Higher attention is given to some of the pillars of lean manufacturing such as just-in-time and cellular manufacturing.

In this case study, researchers observed a variety of features of lean production. Just-in-time was implemented to a certain extent and cellular manufacturing at a more surprising level, which was facilitated especially by the U-shaped facility layout designs observed during the site visits. The value stream mapping showed a proper group technology in place and the management displayed signs of engagement and future advancement desire regarding this philosophy.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Article
Publication date: 22 September 2023

Rajesh Kumar Bhushan

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning…

Abstract

Purpose

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning metal matrix composites. This quality is a function of the machining parameters, tool material, tool configuration and elements of the composites.

Design/methodology/approach

In this study, the turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites is investigated. Thirty experiments were conducted, and the chip-formation mechanism in turning AA7075/SiCp composites at various combinations of cutting speeds, feed and depth of cuts was studied.

Findings

It is observed from the response surface methodology-based experimentation that in turning of coarser reinforcement (particle size 20–40 µm) composites, total gross fracture occurs. This causes small slices of chips and a higher shear plane angle. The nature of chips produced at various combinations of cutting speeds, feed and depth of cuts is different. The chips generated were segmented, spiral in cylindrical form, connected C type, chips with saw tooth, curled chips, washer C type chips, half-curved segmented chips and small-radii segmented chips.

Originality/value

The novelty of this research is that, so far, very little work has been published on the detailed analysis of chips produced during turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Case study
Publication date: 7 December 2023

Chitra Singla and Bulbul Singh

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as…

Abstract

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as part of its inorganic expansion strategy, Tega bought a mill-liner company in South Africa. Buoyed by this growth, two acquisitions were made in Australia and Chile in the year 2011. However, post-acquisition, several managerial, legal and commercial problems crept up in its manufacturing facilities in Chile, leading to financial downturn in Tega's fortunes in 2016 and compelling it to either plan a revival or divest its interest in its Chilean Plant.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

Article
Publication date: 6 November 2023

Funda Baş Bütüner, Aysem Berrin Cakmakli, Ahmet Can Karakadilar and Esra Deniz

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural…

Abstract

Purpose

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural landscape until the 1950s, the study area experienced a drastic land-use change by razing the fertile landscape of the city and replacing it with a sealed surface. Development of the squatter houses after the 1960s and, subsequently, the implementation of a new housing morphology have introduced new sceneries, scales and surface conditions that make the study area a noteworthy case to analyze.

Design/methodology/approach

Regarding the drastic spatio-temporal change of the study area, this research assesses the impacts of the changing land-use on UHI based on three periods. Using 1957, 1991 and 2021 aerial imaginaries and maps, it analyzes the temperature alteration caused by the changing land-use. To do so, different surface types, green patterns and built-up areas have been modeled using Ankara climatic data and transferred to ENVI-Met to calculate the Universal Thermal Climate Index (UTCI) values.

Findings

The calculation has been developed over a transect covering an area of 40 m × 170 m, which includes diversity in terms of architecture, landscape and open space elements. To encourage future design strategies, the research findings deliberate into three extents that discuss the lacking climate knowledge in the ongoing urban transformation projects: impervious surface ratio and regional albedo variation, changing aspect ratio and temperature variation at the pedestrian level.

Originality/value

Urban transformation projects, being countrywide operations in Türkiye, need to cover climate-informed design strategies. Herein, the article underlines the critical position of design decisions in forming a climate-informed urban environment. Dwelling on a typical model of housing transformation in Türkiye, the research could trigger climate-informed urban development strategies in the country.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 1000