Search results

1 – 10 of 11
Article
Publication date: 15 October 2021

Paulthurai Rajesh, Francis H. Shajin and Kumar Cherukupalli

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Abstract

Purpose

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Design/methodology/approach

The hybrid technique is the combination of tunicate swarm algorithm (TSA) and radial basis function neural network.

Findings

TSA gets input parameters from the rectifier outputs such as rectifier direct current (DC) voltage, DC current and time. From the input parameters, it enhances the reduced fault power of rectifier and generates training data set based on the MPPT conditions. The training data set is used in radial basis function. During the execution time, it produces the rectifier reference DC side voltage that is converted to control pulses of inverter switches.

Originality/value

Finally, the proposed method is executed in MATLAB/Simulink site, and the performance is compared with different existing methods like particle swarm optimization algorithm and hill climb searching technique. Then the output illustrates the performance of the proposed method and confirms its capability to solve issues.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 11 October 2023

Abdulwasa B. Barnawi, Abdull Rahman A. Alfifi, Z.M.S. Elbarbary, Saad Fahed Alqahtani and Irshad Mohammad Shaik

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level…

Abstract

Purpose

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level inverters have become unprofitable for high-power applications. Multilevel inverters (MLIs) are used to enhance the output waveform characteristics (i.e. low THD) and to offer various inverter topologies and switching methods.

Design/methodology/approach

MLIs are upgraded versions of two-level inverters that offer more output levels in current and voltage waveforms while lowering the dv/dt and di/dt ratios. This paper aims to review and compare the different topologies of MLI used in high-power applications. Single and multisource MLI's working principal and switching states for each topology are demonstrated and compared. A Simulink model system integrated using detailed circuit simulations in developed in MATLAB®–Simulink program. In this system, a constant voltage source connected to MLI to feed asynchronous motor with squirrel cage rotor type is used to demonstrate the efficacy of the MLI under different varying speed and torque conditions.

Findings

MLI has presented better control and good range of system parameters than two-level inverter. It is suggested that the MLIs like cascade-five-level and NPC-five-level have shown low current harmonics of around 0.43% and 1.87%, respectively, compared to two-level inverter showing 5.82%.

Originality/value

This study is the first of its kind comparing the different topologies of single and multisource MLIs. This study suggests that the MLIs are more suitable for high-power applications.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 14 April 2023

Gideon Daniel Joubert and Atanda Kamoru Raji

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this…

Abstract

Purpose

Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.

Design/methodology/approach

The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.

Findings

Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.

Originality/value

To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 September 2022

Wanjun Yin and Lin-na Jiang

The purpose of this paper through the redundant monitoring unit reflecting the real-time temperature change of the array, an adaptive refresh circuit based on temperature is…

Abstract

Purpose

The purpose of this paper through the redundant monitoring unit reflecting the real-time temperature change of the array, an adaptive refresh circuit based on temperature is designed.

Design/methodology/approach

This paper proposed a circuit design for temperature-adaptive refresh with a fixed refresh frequency of traditional memory, high refresh power consumption at low temperature and low refresh frequency at high temperature.

Findings

Adding a metal oxide semiconductor (MOS) redundancy monitoring unit consistent with the storage unit to the storage bank can monitor the temperature change of the storage bank in real time, so that temperature-based memory adaptive refresh can be implemented.

Originality/value

According to the characteristics that the data holding time of dynamic random access memory storage unit decreases with the increase of temperature, a MOS redundant monitoring unit which is consistent with the storage unit is added to the storage array with the 2T storage unit as the core.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 June 2023

Haider Jouma Touma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a…

57

Abstract

Purpose

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a residential building in Grindelwald which is chosen as the test location.

Design/methodology/approach

Three operational configurations were used to run the proposed MG. In the first configuration, the electric energy can be vended and procured utterly between the main-grid and MG. In the second configuration, the energy trade was performed within 15 kWh as the maximum allowable limit of energy to purchase and sell. In the third configuration, the system performance in the stand-alone operation mode was investigated. A whale optimization technique is used to determine the optimal size of MG in all proposed configurations. The cost of energy (COE) and other measures are used to evaluate the system performance.

Findings

The obtained results revealed that the first configuration is the most beneficial with COE of 0.253$/KWh and reliable 100%. Furthermore, the whale optimization algorithm is sufficiently feasible as compared to other techniques to apply in the applications of MG.

Originality/value

The value of the proposed research is to investigate to what extend the integration between MG and main-grid is beneficial economically and technically. As opposed to previous research studies that have focused predominantly only on the optimal size of MG.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 5 January 2023

Sourin Bhattacharya, Sanjib Majumder and Subarna Roy

Properly planned road illumination systems are collectively a public wealth and the commissioning of such systems may require extensive planning, simulation and testing. The…

Abstract

Purpose

Properly planned road illumination systems are collectively a public wealth and the commissioning of such systems may require extensive planning, simulation and testing. The purpose of this simulative work is to offer a simple approach to facilitate luminance-based road lighting calculations that can be easier to comprehend and apply to practical designing problems when compared to complex multi-objective algorithms and other convoluted simulative techniques.

Design/methodology/approach

Road illumination systems were photometrically simulated with a created model in a validated software platform for specified system design configurations involving high-pressure sodium (HPS) and light-emitting diode (LED) luminaires. Multiple regression analyses were conducted with the simulatively obtained data set to propound a linear model of estimating average luminance, overall uniformity of luminance and energy efficiency of lighting installations, and the simulatively obtained data set was used to explore luminaire power–road surface average luminance characteristics for common geometric design configurations involving HPS and LED luminaires, and four categories of road surfaces.

Findings

The six linear equations of the propounded linear model were found to be well-fitted with their corresponding observation sets. Moreover, it was found that the luminaire power–road surface average luminance characteristics were well-fitted with linear trendlines and the increment in road surface average luminance level per watt increment of luminaire power was marginally higher for LEDs.

Originality/value

This neoteric approach of estimating road surface luminance parameters and energy efficiency of lighting installations, and the compendia of luminaire power–road surface average luminance characteristics offer new insights that can prove to be very useful for practical purposes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 December 2022

Yibo Hu, Jinbo Song and Tingting Zhao

The development of China's solar photovoltaic (PV) industry is in a transition period from pursuing scale and speed to focusing on efficiency and quality. “Smart PV projects”…

Abstract

Purpose

The development of China's solar photovoltaic (PV) industry is in a transition period from pursuing scale and speed to focusing on efficiency and quality. “Smart PV projects” (SPVPs) were proposed by the ministries of the Chinese government in 2018 to encourage intelligent upgrading and to fill the gaps in traditional PV projects. However, only a small number of PV enterprises are in progress, and only a few SPVPs have been built. The intelligence level of China's PV projects needs to be improved. The purpose of this study is to analyze the willingness of the main participants to be involved in the intelligent upgrading of PV projects by establishing an evolutionary game model that includes three parties.

Design/methodology/approach

A tripartite evolutionary game model is constructed that considers PV enterprises, project owners and the government. The evolutionary stability strategies of each party and the corresponding stable conditions are obtained. The parameters that affect the decision behaviors are also analyzed.

Findings

The four stages of the intelligent upgrade of PV projects and the effects of the government subsidy strategies are examined. At different stages, adopting different measures to promote cooperation among the three parties involved is necessary. Government subsidies should be provided to PV enterprises during the initial stage and should be biased toward project owners during the intermediate stage. During the peak stage, PV enterprises constantly need to decrease project costs and improve quality and service, thus helping project owners reduce their initial investments and obtain additional gains. The government's reputation drives it to continually adopt incentive strategies.

Originality/value

This research focuses on the interactions among the three parties. Based on evolutionary game analysis, several conditions that facilitate the intelligent upgrading of PV projects are illustrated. Implications for different developing stages are proposed from the perspectives of each party for the decision-makers of SPVPs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 January 2023

Chathuri Gunarathna, Rebecca Yang, Pabasara Wijeratne Mudiyanselage, Gayashan Amarasinghe, Tharushi Samarasinghalage, R.P. Nilmini Weerasinghe, Hongying Zhao, Chaoxiang Zhang, Chengyang Liu, Kaige Wang and Sujan Dev Sureshkumar Jayakumari

Project-based learning is one of the most effective methods of transferring academic knowledge and skills to real-world situations in higher education. However, its effectiveness…

Abstract

Purpose

Project-based learning is one of the most effective methods of transferring academic knowledge and skills to real-world situations in higher education. However, its effectiveness is not much investigated focusing on the students' narrative. This study aims at evaluating the students' experience and perspective on adopting project-based learning in master by research and doctoral programmes for proactive skills development.

Design/methodology/approach

This study evaluates the self-reflection of 10 postgraduate students and their supervisor who have participated in developing a software tool for solar photovoltaics (PV) integrated building envelope design, management and the related education.

Findings

Findings reveal that the students have effectively improved their knowledge on the subject via collaborating with the industry, self-learning/observation, peer learning, problem-solving and teamwork. Dividing the project into student-led tasks has improved the decision-making and leadership skills, risks identification, planning and time management skills. The overall experience has (1) built up confidence in students, (2) enhanced their creativity and critical thinking and (3) improved their proactive skills and context knowledge.

Originality/value

A clear research gap can be seen in exploring the effectiveness of project-based learning for master by research and doctoral programmes, which mainly focus on extensive research. These programmes do not necessarily focus on developing students' proactive skills, which is the main requirement if they intend to work in the construction industry. This paper addresses the above research gap by demonstrating the effectiveness of project-based learning for developing the proactive skills in a research-intensive learning environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 11