Search results

1 – 10 of 303
Article
Publication date: 5 May 2020

Congliang Fei, Pengfei Xiahou and Fujun Wang

This study aims to focus on the grid connected inverter.

Abstract

Purpose

This study aims to focus on the grid connected inverter.

Design/methodology/approach

The grid connected inverter for harmonic suppression was designed, the topological structure of the inverter and the design of LCL filter were analyzed, then a PIR controller was proposed and finally simulation and experiment were carried out.

Findings

The simulation results showed that the distortion rates of the 5th, 7th and 11th harmonics under PIR control were 0.14%, 0.13% and 0.06%, respectively, which were significantly lower than that under PI control. The system test results also showed that the current waveform under PI control was rough and total harmonic distortion (THD) content was 3.8%; under PIR control, the grid connected current waveform was relatively smooth, with fewer spikes and burrs, and the THD content was 1.9%, indicating that the harmonics were effectively suppressed.

Originality/value

The experimental results verify that the inverter and PIR controller designed in this study are effective for harmonic suppression. This work makes some contributions to the improvement of the effect of harmonic suppression and promotion of the better application of grid connected inverter.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 28 February 2023

Mohammed Jawad Abed and Anis Mhalla

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Abstract

Purpose

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Design/methodology/approach

In this study, the associated probability is calculated based on the solar power generation capacity levels and outages conditions. Then, based on this probability, dependability indices like average energy not supplied (AENS), expected energy not supplied and loss of load expectations (LOLE) are computed, also, another indices have been computed such as (customer average interruption duration index (CAIDI), system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI)) addressing by affected customers with distribution networks reliability assessment, including PV. On the basis of their dependability indices and active power flow, several PV solar modules installed in several places are analyzed. A mechanism for assessing the performance of the grid's integration of renewable energy sources is also under investigation.

Findings

The findings of this study based on data extracted form a PV power plant connected to the power network system in Diyala, Iraq 132 kV, attempts to identify the system's weakest points in order to improve the system's overall dependability. In addition, enhanced reliability indices are given for measuring solar PV systems performance connected to the grid and reviewed for the benefit of the customers.

Originality/value

The main contributions of this study are two methods for determining the reliability of PV generators taking into consideration the system component failure rates and the power electronic component defect rates in a PV system which depend on the power input and the power loss using electrical transient analysis program (ETAP) program.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 5 March 2018

Tohid Jalilzadeh, Mehrdad Tarafdar Hagh and Mehran Sabahi

This paper aims to propose a new transformer-less inverter structure to reduce the common-mode leakage current in grid-connected photovoltaic (PV) systems.

Abstract

Purpose

This paper aims to propose a new transformer-less inverter structure to reduce the common-mode leakage current in grid-connected photovoltaic (PV) systems.

Design/methodology/approach

The proposed circuit structure is the same as the conventional full-bridge inverter with three additional power switches in a triangular structure. These three power switches are between the bridge and the output filter, and they mitigate the common-mode leakage current flowing toward the PV panels’ capacitors. The common-mode leakage current mitigation is done through the three-direction clamping cell (TDCC) concept. By clamping the common-mode voltage to the middle voltage of the DC-link capacitors, the leakage current and the total harmonic distortion (THD) of the injected current to the grid is effectively reduced. Therefore, the efficiency is improved.

Findings

The switching modes and the control method are introduced. A comparison is carried out between the proposed structure and other solutions in the literature. The proposed topology and its respective control method are simulated by PSCAD/EMTDC software. The simulation results validate the advantages of the presented structure such as clamping the common-mode voltage and reducing leakage current and THD of injected current to the grid.

Originality/value

Presenting a single phase-improved inverter structure with low-leakage current for grid-connected PV power systems represents a significant original contribution to this work. The proposed structure can inject a sinusoidal current with low THD to the AC grid, and the power factor is unity on the AC side. In the half positive cycle, one of the switches in the TDCC is turned off under zero current. Besides, one of the other switches in TDCC is turned on with zero voltage and, therefore, its turn-on switching losses are zero. The efficiency of the proposed topology is high because of the reduction of leakage current and power losses. Accordingly, the presented topology can be a good solution to the leakage current elimination.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 November 2008

Sotirios B. Skretas, Demetrios P. Papadopoulos and S.N. Singh

The purpose of this paper is to present a systematic design procedure along with modeling and simulation of a medium‐scale centralized dc‐bus grid connected hybrid (wind turbine…

Abstract

Purpose

The purpose of this paper is to present a systematic design procedure along with modeling and simulation of a medium‐scale centralized dc‐bus grid connected hybrid (wind turbine (WT) and photovoltaic (PV)) power system (GCHWPPS) for supplying electric power to a three‐phase medium voltage distribution grid.

Design/methodology/approach

The design, modeling, simulation and control of the GCHWPPS are achieved by using Simulink/MATLAB environment.

Findings

The case study shows that the proposed system configuration along with the suggested control schemes achieve rapidly, accurately, stably and simultaneously four objectives, i.e. maximum power point tracking of WT and photovoltaic generator, dc voltage regulation/stabilization at the input of the inverter, and high electric power quality injected into the grid from the inverter, fulfilling all necessary practical interconnection requirements while providing additional load power factor correction.

Originality/value

An effective intelligent dynamic control method is used to a proposed GCHWPPS configuration to simultaneously achieve the four mentioned practical objectives while meeting the grid requirements.

Details

International Journal of Energy Sector Management, vol. 2 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 11 February 2021

Houda Laabidi, Houda Jouini and Abdelkader Mami

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear…

63

Abstract

Purpose

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear strategy is applied for the chopper circuit and grid-tied inverter and compared with other two conventional schemes; a traditional proportional-integral (PI) and sliding mode controller (SMC) using the same switching frequency.

Design/methodology/approach

Firstly, the MPC scheme uses the mathematical model to predict future behaviors of the controlled converter outputs for possible switching states. After that, the optimal voltage vector is selected by minimizing a cost function, which is defined as a sum of the absolute values of the controlled current errors. Then, the corresponding switching signals are applied to the converter switches in the next sampling period to track correctly the reference current. Thus, the MPC scheme ensures a minimal error between the predicted and reference trajectories of the considered variables.

Findings

The MPC-based algorithm presents several benefits in terms of high accuracy control, reduced DC-link voltage ripples during steady-state operation, faster transient response, lower overshoots and disturbance rejection and acceptable total harmonic distortion.

Originality/value

The authors introduce several simulation case studies, using PSIM software package, which prove the reliability and effectiveness of the proposed MPC scheme. Therefore, the MPC performances, during dynamic and steady-state condition, are compared with those obtained by a PI regulator and SMC to highlight the improvements, specifically the transfer of smooth power to the grid.

Article
Publication date: 4 January 2011

Ionel Vechiu, Octavian Curea, Alvaro Llaria and Haritza Camblong

Nowadays, distributed generation and microgrids (MGs) are becoming an important research line because of their peculiar characteristics. MGs are composed of small power sources…

Abstract

Purpose

Nowadays, distributed generation and microgrids (MGs) are becoming an important research line because of their peculiar characteristics. MGs are composed of small power sources which can be renewable, placed near customer sites. Moreover, they have the inherent property of islanding: the disconnection of either the MG from the main grid or a part of a MG from the rest of the MG. The purpose of this paper is to study two different control strategies allowing grid connected and islanding operation of the MG.

Design/methodology/approach

In this paper, the behaviour of a particular MG during grid connected and islanding operation is investigated. The studied MG is based on different energy sources: a wind turbine, a photovoltaic array, a backup diesel generator and a storage system. The renewable sources and the storage system are connected on a DC bus which is interconnected with a main grid through a voltage source inverter (VSI). The attention focuses on the control technique of the VSI during grid connected and islanding operation of the MG. The behaviour of the AC signals on the point of common coupling between the MG and the main grid as well as the DC signals on the DC bus on which are connected renewable energy sources of the MG has been investigated by simulation using a MATLAB/Simulink model.

Findings

For the investigated MG, the simulation results show that using a single master VSI and classical control strategies, it is possible to have a good power quality on the MG during grid connection and islanding operation.

Originality/value

This paper investigates the behaviour of a particular MG in order to analyse two different control strategies allowing grid connected and islanding operation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2020

Subhendu Bikash Santra and Subodh Kumar Mohanty

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated…

Abstract

Purpose

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated (PWM) inverter.

Design/methodology/approach

In the proposed SHE, switching angles for inverter control are determined offline through numerical techniques and stored in a microcontroller memory as a function of modulation index (md). The methodology uses the solution that leads to a lower change of switching angles from the previous modulation index (md) for storing in the processor memory for multiple solutions. This leads to a smaller number of sections when a piecewise mixed model is considered for storing the entire switching angle curve for the online inverter control. The proposed idea is simulated and experimentally validated on a laboratory prototype of PV (500 W) grid-tied PWM inverter. The control environment is then realized in NI c-RIO 9082.

Findings

This proposed technique is suitable for limiting voltage total harmonics distortion (THD) in single-phase PV tied grid connected voltage source inverter (VSI). Moreover, it is found that filter (L-C) size requirement is less.

Originality/value

The proposed SHE with piecewise mixed model technique effectively reduces voltage THD with less filter size (L-C) in a single-phase PV-tied system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2018

Abdeldjabar Benrabah and Dianguo Xu

The purpose of this study is to improve the control performance of grid-connected photovoltaic (PV) inverters with inductive-capacitive-inductive (LCL) filters by proposing a new…

Abstract

Purpose

The purpose of this study is to improve the control performance of grid-connected photovoltaic (PV) inverters with inductive-capacitive-inductive (LCL) filters by proposing a new robust current control based on uncertainty and disturbance estimator (UDE).

Design/methodology/approach

The control strategy combines the capacitor current feedback with a UDE-based control to solve robust stability issues in the presence of parametric uncertainties and disturbances.

Findings

This paper provides guidelines for tuning the controller parameters where it is shown to be easy to implement by simply selecting the appropriate feedback coefficient, the reference model and an approximate lumped disturbance bandwidth. Simulation and experimental results demonstrate the effectiveness of the proposed controller in terms of resonance damping, tracking performance and robust stability under grid uncertainties and disturbances.

Practical implications

This paper offers a new approach for designing implementable robust controllers for LCL-filtered grid-connected PV inverters.

Originality/value

A new UDE-based current control is proposed to improve the stability performance of grid-connected PV inverters. The advantages of UDE-based control are its simple structure, easy tuning and robustness under parameter uncertainties and disturbances. Simulation and experimental results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 July 2021

Vikash Gurugubelli and Arnab Ghosh

The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is…

Abstract

Purpose

The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance.

Design/methodology/approach

In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid.

Findings

The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.

Research limitations/implications

In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work.

Originality/value

The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 March 2018

Mohammad Maalandish, Seyed Hossein Hosseini, Mehran Sabahi and Pouyan Asgharian

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with…

Abstract

Purpose

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with the same outputs and a symmetric multi-level inverter.

Design/methodology/approach

The proposed structure, a two-stage DC–AC symmetric multi-level inverter with modified Model Predictive Control (MMPC) method, is presented for Photovoltaic (PV) applications. The voltage of DC-link capacitors of the boost converter is controlled by MMPC control method to select appropriate switching vectors for the multi-level inverter. The proposed structure is provided for single-phase power system, which increases 65 V input voltage to 220 V/50 Hz output voltage, with 400 V DC link. Simulation results of proposed structure with MMPC method are carried out by PSCAD/EMTDC software.

Findings

Based on the proposed structure and control method, total harmonic distortion (THD) reduces, which leads to lower power losses and higher circuit reliability. In addition, reducing the number of active switches in current path causes to lower voltage stress on the switches, lower PV leakage current and higher overall efficiency.

Originality/value

In the proposed structure, a new control method is presented that can make a symmetric five-level voltage with lower THD by selecting proper switching for PV applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 303