Search results

1 – 3 of 3
Article
Publication date: 23 January 2024

Wang Zhang, Lizhe Fan, Yanbin Guo, Weihua Liu and Chao Ding

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection…

Abstract

Purpose

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection correction system based on passive light vision sensors was designed using the Halcon software from MVtec Germany as a platform.

Design/methodology/approach

This paper proposes an adaptive correction system for welding guns and seams divided into image calibration and feature extraction. In the image calibration method, the field of view distortion because of the position of the camera is resolved using image calibration techniques. In the feature extraction method, clear features of the weld gun and weld seam are accurately extracted after processing using algorithms such as impact filtering, subpixel (XLD), Gaussian Laplacian and sense region for the weld gun and weld seam. The gun and weld seam centers are accurately fitted using least squares. After calculating the deviation values, the error values are monitored, and error correction is achieved by programmable logic controller (PLC) control. Finally, experimental verification and analysis of the tracking errors are carried out.

Findings

The results show that the system achieves great results in dealing with camera aberrations. Weld gun features can be effectively and accurately identified. The difference between a scratch and a weld is effectively distinguished. The system accurately detects the center features of the torch and weld and controls the correction error to within 0.3mm.

Originality/value

An adaptive correction system based on a passive light vision sensor is designed which corrects the field-of-view distortion caused by the camera’s position deviation. Differences in features between scratches and welds are distinguished, and image features are effectively extracted. The final system weld error is controlled to 0.3 mm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2022

Prapti Behera, Sanjukta Aravind and Balaji Seetharaman

Bales of cotton run through the gins and textile mill instruments, stick to them and make it cumbersome for the ginning mill workers. This is so because more time and money have…

Abstract

Purpose

Bales of cotton run through the gins and textile mill instruments, stick to them and make it cumbersome for the ginning mill workers. This is so because more time and money have to be invested in cleaning these instruments. The stickiness of cotton causes health hazards to the workers, decreases the yarn quality and economic loss to the textile industry. The effect of cotton stickiness on textile ginning, various methods for cotton stickiness detection and the steps for reduction are discussed.

Design/methodology/approach

The different methods that are available for detecting and measuring cotton stickiness are described. The sugars that cause stickiness are either of plant origin (physiological sugars) or from the feeding insects (entomological origin). The methods for stickiness detection and reduction are discussed under physical, chemical and biological categories.

Findings

This review suggests possible ways to mitigate cotton stickiness.

Originality/value

One of the major issues of the textile industry is honeydew-contaminated cotton stickiness. However, there are few papers on detection methods for analyzing honeydew cotton stickiness along with the approaches to reduce stickiness. This paper summarizes different methods along with a study for detection as well as reduction of cotton stickiness.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 June 2023

Adam Lovasz

Drawing on the work of Niklas Luhmann, the paper argues that technology can be viewed as a self-referential system which is autonomous from both human beings and other function…

Abstract

Purpose

Drawing on the work of Niklas Luhmann, the paper argues that technology can be viewed as a self-referential system which is autonomous from both human beings and other function systems of society. The paper aims to develop a philosophy of technology from the work of Niklas Luhmann. To achieve this aim, it draws upon the systems-theory work of Jacques Ellul, a philosopher of technology who focuses on the autonomous potential of technological evolution.

Design/methodology/approach

The paper draws on the work of Niklas Luhmann and Jacques Ellul to explore the theme of autonomous technology and what this means for our thinking about technological issues in the twenty-first century. Insights from these two thinkers and researchers working in the Luhmannian sociological tradition are applied to remote work.

Findings

The sociological approach of Luhmann, coupled with Ellul's insights into the autonomous nature of technology, can help us develop a systems theory of technology which takes seriously its irreducibility to human functions.

Research limitations/implications

The paper contributes to the growing sociological literature that thematizes the Luhmannian approach to technology, helping us better understand this phenomenon and think in new ways about what technological autonomy means.

Originality/value

The paper brings together the work of Luhmann, Ellul and contemporary researchers to advance a new understanding of technology and technological communication.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 3 of 3