Search results

1 – 10 of over 1000
Article
Publication date: 26 December 2023

Li Zhang and Xican Li

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle…

Abstract

Purpose

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle cosine relational degree model from the perspective of proximity and similarity.

Design/methodology/approach

Firstly, the algorithms of the generalized greyness of interval grey number and interval grey number vector are given, and its properties are analyzed. Then, based on the grey relational theory, the grey angle cosine relational model is proposed based on the generalized greyness of interval grey number, and the relationship between the classical cosine similarity model and the grey angle cosine relational model is analyzed. Finally, the validity of the model in this paper is illustrated by the calculation examples and an application example of related factor analysis of maize yield.

Findings

The results show that the grey angle cosine relational degree model has strict theoretical basis, convenient calculation and is easy to program, which can not only fully utilize the information of interval grey numbers but also overcome the shortcomings of greyness relational degree model. The grey angle cosine relational degree is an extended form of cosine similarity degree of real numbers. The calculation examples and the related factor analysis of maize yield show that the model proposed in this paper is feasible and valid.

Practical implications

The research results not only further enrich the grey system theory and method but also provide a basis for the grey relational analysis of the sequences in which the interval grey numbers coexist with the real numbers.

Originality/value

The paper succeeds in realizing the algorithms of the generalized greyness of interval grey number and interval grey number vector, and the grey angle cosine relational degree, which provide a new method for grey relational analysis.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 23 October 2023

Camelia Delcea, Saad Ahmed Javed, Margareta-Stela Florescu, Corina Ioanas and Liviu-Adrian Cotfas

The Grey System Theory (GST) is an emerging area of research within artificial intelligence. Since its founding in 1982, it has seen a lot of multidisciplinary applications. In…

Abstract

Purpose

The Grey System Theory (GST) is an emerging area of research within artificial intelligence. Since its founding in 1982, it has seen a lot of multidisciplinary applications. In just a short period, it has garnered some considerable strengths. Based on the 1987–2021 data collected from the Web of Science (WoS), the current study reports the advancement of the GST.

Design/methodology/approach

Research papers utilizing the GST in the fields of economics and education were retrieved from the Web of Science (WoS) platform using a set of predetermined keywords. In the final stage of the process, the papers that underwent analysis were manually chosen, with selection criteria based on the information presented in the titles and abstracts.

Findings

The study identifies prominent authors, institutions, publications and journals closely associated with the subject. In terms of authors, two major clusters are identified around Liu SF and Wang ZX, while the institution with the highest number of publications is Nanjing University of Aeronautics and Astronautics. Moreover, significant keywords, trends and research directions have been extracted and analyzed. Additionally, the study highlights the regions where the theory holds substantial influence.

Research limitations/implications

The study is subject to certain limitations stemming from factors such as the language employed in the chosen literature, the papers included within the Web of Science (WoS) database, the designation of works categorized as “articles” in the database, the specific selection of keywords and keyword combinations, and the meticulous manual process employed for paper selection. While the manual selection process itself is not inherently limiting, it demands a greater investment of time and meticulous attention, contributing to the overall limitations of the study.

Practical implications

The significance of the study extends not only to scholars and practitioners but also to readers who observe the development of emerging scientific disciplines.

Originality/value

The analysis of trends revealed a growing emphasis on the application of GST in diverse domains, including supply chain management, manufacturing and economic development. Notably, the emergence of COVID-19 as a new research focal point among GST scholars is evident. The heightened interest in COVID-19 can be attributed to its global impact across various academic disciplines. However, it is improbable that this interest will persist in the long term, as the pandemic is gradually brought under control.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 January 2024

Sifeng Liu, Ningning Lu, Zhongju Shang and R.M. Kapila Tharanga Rathnayaka

The purpose of this paper is to explore a new approach to solve the problem of positive and negative offset in the calculation process of integral elements, then propose a series…

Abstract

Purpose

The purpose of this paper is to explore a new approach to solve the problem of positive and negative offset in the calculation process of integral elements, then propose a series of new grey relational degree model for cross sequences.

Design/methodology/approach

The definitions of cross sequences and area elements have been proposed at first. Then the concept of difference degree between sequences has been put forward. Based on the definition of difference degree between sequences, various modified grey relational degree models for cross sequences have been proposed to solve the measurement problem of cross sequence correlation relationships.

Findings

(1) The new definition of cross sequences; (2) The area element; (3) Various modified grey relational degree models for cross sequences based on the definition of difference degree between sequences.

Practical implications

The grey relational analysis model of cross sequences is a difficult problem in grey relational analysis. The new model proposed in this article can effectively avoid the calculation deviation of grey relational analysis model for cross sequences, and reasonably measure the correlation between cross sequences. The new model was used to analyse the food consumer price index in Shaanxi Province, clarifying the relationship between different types of food consumer price indices, some interesting results that are not completely consistent with general economic theory were obtained.

Originality/value

The new definition of cross sequences, the area element and various modified grey relational degree models for cross sequences were proposed.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 February 2023

Yiming Zhan, Hao Chen, Mengyu Hua, Jinfu Liu, Hao He, Patrick Wheeler, Xiaodong Li and Vitor Fernao Pires

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Abstract

Purpose

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Design/methodology/approach

First, the structure and initial dimensions of TSRM are obtained based on design criteria and requirements. Second, the sensitivity analysis rules, process and results of TSRM are performed. Third, three optimization objectives are determined by the average electromagnetic force, smoothing coefficient and copper loss ratio. The analytic hierarchy process-entropy method-a technique for order preference by similarity to an ideal solution-grey relation analysis comprehensive evaluation algorithm is used to optimize TSRM. Finally, a prototype is manufactured, a hardware platform is built and static and dynamic experimental validations are carried out.

Findings

The sensitivity analysis reveals that parameters significantly impact the performance of TSRM. The results of multi-objective optimization show that the average electromagnetic force and smoothing coefficient after optimization are better than before, and the copper loss ratio reduces slightly. The experimental and simulated results of TSRM are consistent, which verifies the accuracy of TSRM.

Research limitations/implications

In this paper, only three optimization objectives are selected in the multi-objective optimization process. To improve the performance of TSRM, the heating characteristics, such as iron loss, can be considered as the optimization objective for a more comprehensive analysis of TSRM performance.

Originality/value

A novel motor structure is designed, combining the advantages of the TSRM and the linear motor. The established sensitivity analysis rules are scientific and suitable for the effects of various parameters on motor performance. The proposed multi-objective optimization algorithm is a comprehensive evaluation algorithm. It considers subjective weight and objective weight and fully uses the original data and the relational degree between the optimization objectives.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 April 2023

Govind Waghmare and Rachayya Rudramuni Arakerimath

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet…

Abstract

Purpose

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet strength and make a low-cost model of the multi-dimpling for sheet metal industries. To create an empirical expression linking process performance to different input factors, the percentage contribution of these elements is also calculated.

Design/methodology/approach

Taguchi grey relational analysis is used to apply a new effective strategy to experimental data in order to optimize the dimpling process parameters while taking into account several performance factors and low-cost model. In addition, a statistical method called ANOVA is used to ensure that the results are adequate. The optimal process parameters that generate improved mechanical properties are determined via grey relational analysis (GRA). Every level of the process variables, a response table and a grey relational grade (GRG) has been established.

Findings

The factors created for experiment number 2 with 0.5 mm as the sheet thickness, 2 mm dimple diameter, 0.5 mm dimple depth, 8 mm dimples spacing and the material of SS 304 were allotted rank one, which belonged to the optimal parameter values giving the greatest value of GRG.

Practical implications

The study demonstrates that the process parameters of any dimple sheet manufacturing industry can be optimized, and the effect of process parameters can be identified.

Originality/value

The proposed low-cost model is relatively economical and readily implementable to small- and large-scale industries using newly developed multi-dimpling multi-punch and die.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 November 2022

Melisa Ozbiltekin-Pala, Yigit Kazancoglu, Anil Kumar, Jose Arturo Garza-Reyes and Sunil Luthra

The manufacturing sector is highly competitive and operationally complex. Therefore, the strategic alignment between operational excellence methodologies and Industry 4.0…

Abstract

Purpose

The manufacturing sector is highly competitive and operationally complex. Therefore, the strategic alignment between operational excellence methodologies and Industry 4.0 technologies is one of the issues that need to be addressed. The main aim of the study is to determine the critical factors of strategic alignment between operational excellence methodologies and Industry 4.0 technologies for manufacturing industries and make comparative analyses between automotive, food and textile industries in terms of strategic alignment between operational excellence methodologies and Industry 4.0 technologies.

Design/methodology/approach

First, determining the critical factors based on literature review and expert opinions, these criteria are weighted, and analytical hierarchy process is run to calculate the weights of these criteria. Afterward, the best sector is determined by the grey relational analysis method according to the criteria for the three manufacturing industries selected for the study.

Findings

As a result of AHP, “Infrastructure for Right Methodology, Techniques and Tools, is in the first place,” Organizational Strategy, is in the second place, while the third highest critical factor is “Capital Investment”. Moreover, based on grey relational analysis (GRA) results, the automotive industry is determined as the best alternative in terms of strategic alignment between operational excellence (OPEX) methodologies and I4.0 technologies.

Originality/value

This study is unique in that it is primarily possible to obtain the order of importance within the criteria and to make comparisons between three important manufacturing industries that are important for the economies of the world.

Details

The TQM Journal, vol. 36 no. 1
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 20 September 2019

Subhash Yaragal, Chethan Kumar B. and Manoj Uddavolu Abhinav

To reduce environmental impact caused by excessive use of ordinary Portland cement (OPC) and to mitigate scarcity of base materials such as natural coarse aggregate (NCA)…

Abstract

Purpose

To reduce environmental impact caused by excessive use of ordinary Portland cement (OPC) and to mitigate scarcity of base materials such as natural coarse aggregate (NCA), industrial by-products can be carefully used as alternatives to OPC and NCA, in production of concrete. This paper aims to describe the performance of using ground granulated blast furnace slag (GGBS), fly ash (FA) as a complete replacement to OPC and ferrochrome slag (FCS) as replacement to NCA in production of novel FCS based alkali activated slag/fly ash concretes (AASFC) and evaluate their performance at elevated temperatures.

Design/methodology/approach

Two control factors with three levels each i.e. FA (0, 25 and 50 per cent by weight) and FCS (0, 50 and 100 per cent by volume) as a GGBS and NCA replacement, respectively, were adopted in AASFC mixtures. Further, AASFC mixture specimens were subjected to different levels of elevated temperature, i.e. 200°C, 400°C, 600°C and 800°C. Compressive strength and residual compressive strength were considered as responses. Three different optimization techniques i.e. gray relational analysis, technique for order preference by similarity to ideal solution and Desirability function approach were used to optimize AASFC mixtures subjected to elevated temperatures.

Findings

As FA replacement increases in FCS based AASFC mixtures, workability increases and compressive strength decreases. The introduction of FCS as replacement to NCA in AASFC mixture did not show any significant change in compressive strength under ambient condition. AASFC produced with 75 per cent GGBS, 25 per cent FA and 100 per cent FCS was found to have excellent elevated temperature enduring properties among all other AASFC mixtures studied.

Originality/value

Although several studies are available on using GGBS, FA and FCS in production of OPC-based concretes, present study reports the performance of novel FCS based AASFC mixtures subjected to elevated temperatures. Further, GGBS, FA and FCS used in the present investigation significantly reduces CO2 emission and environmental degradation associated with OPC production and NCA extraction, respectively.

Article
Publication date: 1 February 2024

Lan Xu and Xueyi Zhu

Currently, China’s manufacturing industry chain still faces the danger of chain breakage due to the persistent “lack of technology” issue. The definition and detection of key…

Abstract

Purpose

Currently, China’s manufacturing industry chain still faces the danger of chain breakage due to the persistent “lack of technology” issue. The definition and detection of key nodes in the industry chain are significant to the enhancement of the stability of the industry chain. Therefore, detecting the key nodes in the manufacturing industry chain is necessary.

Design/methodology/approach

A complex network based on the links amongst listed manufacturing enterprises is built, and the authors analyse the network’s basic characteristics and vulnerability, taking into account the impact of scientific and technological innovation on the stability of the industry chain.

Findings

It is found that the high structural characteristic of midstream nodes in the naval architecture and marine engineering equipment industry chain determines their importance to stability, and the key status of upstream nodes is reflected in the weakness of technological innovation. The upstream nodes should focus on improving their independent innovation and R&D capability, whilst the midstream nodes should maintain a close supply–demand cooperation relationship.

Originality/value

The key node detection model for industry chain stability is constructed by considering various factors from the perspective of network and technological innovation. Empirical study is conducted to verify effectiveness of proposed method.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 March 2024

Yash Daultani, Ashish Dwivedi, Saurabh Pratap and Akshay Sharma

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply…

37

Abstract

Purpose

Natural disasters cause serious operational risks and disruptions, which further impact the food supply in and around the disaster-impacted area. Resilient functions in the supply chain are required to absorb the impact of resultant disruptions in perishable food supply chains (FSC). The present study identifies specific resilient functions to overcome the problems created by natural disasters in the FSC context.

Design/methodology/approach

The quality function deployment (QFD) method is utilized for identifying these relations. Further, fuzzy term sets and the analytical hierarchy process (AHP) are used to prioritize the identified problems. The results obtained are employed to construct a QFD matrix with the solutions, followed by the technique for order of preference by similarity to the ideal solution (TOPSIS) on the house of quality (HOQ) matrix between the identified problems and functions.

Findings

The results from the study reflect that the shortage of employees in affected areas is the major problem caused by a natural disaster, followed by the food movement problem. The results from the analysis matrix conclude that information sharing should be kept at the highest priority by policymakers to build and increase resilient functions and sustainable crisis management in a perishable FSC network.

Originality/value

The study suggests practical implications for managing a FSC crisis during a natural disaster. The unique contribution of this research lies in finding the correlation and importance ranking among different resilience functions, which is crucial for managing a FSC crisis during a natural disaster.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 18 December 2023

Federica Murmura, Fabio Musso, Laura Bravi and Giada Pierli

There is a strong consensus among scholars that the international competitiveness of companies strongly depends on the support of institutions, which reduces uncertainty in…

Abstract

Purpose

There is a strong consensus among scholars that the international competitiveness of companies strongly depends on the support of institutions, which reduces uncertainty in transactions by giving form to economic interactions, while less attention was paid to the role of international standards within this context. This study intends to propose its contribution by deepening the role of process certifications in the competitiveness and internationalization strategies of companies, with specific reference to the wood-furniture sector.

Design/methodology/approach

Data were collected using a questionnaire survey distributed via computer-assisted web interviewing (CAWI) methodology and sent to a sample of 2,845 Italian companies which operate in the wood-furniture industry, using simple random sampling. Thanks to the survey administration, 228 companies participated to the survey.

Findings

The study shows that it is companies operating in international markets that define this tool as relevant; this underlines how certification is seen as a kind of business card for entering international markets. In this context, the role of business leadership emerges as fundamental in the practical definition of the objectives to be set by adopting a quality management systems and in the subsequent commitment to obtain them.

Originality/value

Up to now, the literature has taken these elements into analysis mainly considering the consumers' perspective. In sectors with a higher content of innovation, technology and design, such as the wood-furniture sector, the literature appears to be poor in terms of contributions.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 1000