Search results

1 – 10 of 593
Open Access
Article
Publication date: 31 December 2010

Min-Jung Kim, Seock-Jin Hong and Hun-Koo Ha

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for…

Abstract

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for greenhouse gas regulations on international airlines. For this purpose, policies to reduce greenhouse gas emissions from aviation transportation were developed based on international agreements and the cases of advanced countries. In addition, marginal abatement costs and greenhouse gas reduction measures were derived for the effective execution of these policies. While estimating greenhouse gas emissions from aviation transportation, it was found that there has been an average increase of 3.9% and 12.9% for domestic and international flights, indicating that it is urgent that we prepare global greenhouse gas regulations. The estimated marginal abatement cost of greenhouse gas from airplanes was approximately. USD 123, and this amount could be used to decide the price of emission rights, the amount of carbon tax, and could be referred to when distributing incentives for voluntary agreements.

The measures to reduce greenhouse gas emissions for aviation transportation were classified into four types: voluntary agreements, international collaboration, greenhouse gas reduction technology and operation process development, and application of emission trading and carbon tax.

Details

Journal of International Logistics and Trade, vol. 8 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 24 August 2020

Amanuel Berhe, Solomon Abera Bariagabre and Mulubrhan Balehegn

Different livestock production systems contribute to globally Greenhouse gas emission (GHG) emission differently. The aim of this paper is to understand variation in emission in…

3983

Abstract

Purpose

Different livestock production systems contribute to globally Greenhouse gas emission (GHG) emission differently. The aim of this paper is to understand variation in emission in different production systems and it is also important for developing mitigation interventions that work for a specific production system.

Design/methodology/approach

In this study, the authors used the Global Livestock Environmental Assessment interactive model (GLEAM-i) to estimate the GHG emission and emission intensity and tested the effectiveness of mitigation strategies from 180 farms under three production systems in northern Ethiopia, namely, pastoral, mixed and urban production systems.

Findings

Production systems varied in terms of herd composition, livestock productivity, livestock reproductive parameters and manure management systems, which resulted in difference in total GHG emission. Methane (82.77%) was the largest contributor followed by carbon dioxide (13.40%) and nitrous oxide (3.83%). While both total carbon dioxide and methane were significantly higher (p < 0.05) in urban production system than the other systems emission intensities of cow’s milk and goat and sheep’s meat were lower in urban systems. Improvement in feed, manure management and herd parameters resulted in reduction of total GHG emission by 30, 29 and 21% in pastoral, mixed and urban production systems, respectively.

Originality/value

This study is a first time comparison of the GHG emission production by various production systems in northern Ethiopia. Moreover, it uses the GLEAM-i program for the first time in the ex ante settings for measuring and comparing emissions as well as for developing mitigation scenarios. By doing so, it provides information on the various livestock production system properties that contribute to the increase or decrease in GHG emission and helps in developing guidelines for low emission livestock production systems.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 9 January 2017

Douglas Warner, John Tzilivakis, Andrew Green and Kathleen Lewis

This paper aims to assess agri-environment (AE) scheme options on cultivated agricultural land in England for their impact on agricultural greenhouse gas (GHG) emissions. It…

4837

Abstract

Purpose

This paper aims to assess agri-environment (AE) scheme options on cultivated agricultural land in England for their impact on agricultural greenhouse gas (GHG) emissions. It considers both absolute emissions reduction and reduction incorporating yield decrease and potential production displacement. Similarities with Ecological Focus Areas (EFAs) introduced in 2015 as part of the post-2014 Common Agricultural Policy reform, and their potential impact, are considered.

Design/methodology/approach

A life-cycle analysis approach derives GHG emissions for 18 key representative options. Meta-modelling is used to account for spatial environmental variables (annual precipitation, soil type and erosion risk), supplementing the Intergovernmental Panel on Climate Change methodology.

Findings

Most options achieve an absolute reduction in GHG emissions compared to an existing arable crop baseline but at the expense of removing land from production, risking production displacement. Soil and water protection options designed to reduce soil erosion and nitrate leaching decrease GHG emissions without loss of crop yield. Undersown spring cereals support decreased inputs and emissions per unit of crop yield. The most valuable AE options identified are included in the proposed EFAs, although lower priority is afforded to some.

Practical implications

Recommendations are made where applicable to modify option management prescriptions and to further reduce GHG emissions.

Originality/value

This research is relevant and of value to land managers and policy makers. A dichotomous key summarises AE option prioritisation and supports GHG mitigation on cultivated land in England. The results are also applicable to other European countries.

Details

International Journal of Climate Change Strategies and Management, vol. 9 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 14 September 2023

Laurens Swinkels and Thijs Markwat

To better understand the impact of choosing a carbon data provider for the estimated portfolio emissions across four asset classes. This is important, as prior literature has…

1165

Abstract

Purpose

To better understand the impact of choosing a carbon data provider for the estimated portfolio emissions across four asset classes. This is important, as prior literature has suggested that Environmental, Social and Governance scores across providers have low correlation.

Design/methodology/approach

The authors compare carbon data from four data providers for developed and emerging equity markets and investment grade and high-yield corporate bond markets.

Findings

Data on scope 1 and scope 2 is similar across the four data providers, but for scope 3 differences can be substantial. Carbon emissions data has become more consistent across providers over time.

Research limitations/implications

The authors examine the impact of different carbon data providers at the asset class level. Portfolios that invest only in a subset of the asset class may be affected differently. Because “true” carbon emissions are not known, the authors cannot investigate which provider has the most accurate carbon data.

Practical implications

The impact of choosing a carbon data provider is limited for scope 1 and scope 2 data for equity markets. Differences are larger for corporate bonds and scope 3 emissions.

Originality/value

The authors compare carbon accounting metrics on scopes 1, 2 and 3 of corporate greenhouse gas emissions carbon data from multiple providers for developed and emerging equity and investment grade and high yield investment portfolios. Moreover, the authors show the impact of filling missing data points, which is especially relevant for corporate bond markets, where data coverage tends to be lower.

Details

Managerial Finance, vol. 50 no. 1
Type: Research Article
ISSN: 0307-4358

Keywords

Open Access
Article
Publication date: 25 March 2024

Tiago Ferreira Barcelos and Kaio Glauber Vital Costa

This study aims to analyze and compare the relationship between international trade in global value chains (GVC) and greenhouse gas (GHG) emissions for Brazil and China from 2000…

Abstract

Purpose

This study aims to analyze and compare the relationship between international trade in global value chains (GVC) and greenhouse gas (GHG) emissions for Brazil and China from 2000 to 2016.

Design/methodology/approach

The input-output method apply to multiregional tables from Eora-26 to decompose the GHG emissions of the Brazilian and Chinese productive structure.

Findings

The data reveals that Chinese production and consumption emissions are associated with power generation and energy-intensive industries, a significant concern among national and international policymakers. For Brazil, the largest territorial emissions captured by the metrics come from services and traditional industry, which reveals room for improving energy efficiency. The analysis sought to emphasize how the productive structure and dynamics of international trade have repercussions on the environmental dimension, to promote arguments that guide the execution of a more sustainable, productive and commercial development strategy and offer inputs to advance discussions on the attribution of climate responsibility.

Research limitations/implications

The metrics did not capture emissions related to land use and deforestation, which are representative of Brazilian emissions.

Originality/value

Comparative analysis of emissions embodied in traditional sectoral trade flows and GVC, on backward and forward sides, for developing countries with the main economic regions of the world.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 15 January 2024

Marcello Braglia, Francesco Di Paco, Roberto Gabbrielli and Leonardo Marrazzini

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes…

428

Abstract

Purpose

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes a new set of Lean Key Performance Indicators (KPIs), which translates the well-known logic of Overall Equipment Effectiveness in the field of GHG emissions, that can progressively detect industrial losses that cause GHG emissions and support decision-making for implementing improvements.

Design/methodology/approach

The new metrics are presented with reference to two different perspectives: (1) to highlight the deviation of the current value of emissions from the target; (2) to adopt a diagnostic orientation not only to provide an assessment of current performance but also to search for the main causes of inefficiencies and to direct improvement implementations.

Findings

The proposed framework was applied to a major company operating in the plywood production sector. It identified emission-related losses at each stage of the production process, providing an overall performance evaluation of 53.1%. The industrial application shows how the indicators work in practice, and the framework as a whole, to assess GHG emissions related to industrial losses and to proper address improvement actions.

Originality/value

This paper scrutinizes a new set of Lean KPIs to assess the industrial losses causing GHG emissions and identifies some significant drawbacks. Then it proposes a new structure of losses and KPIs that not only quantify efficiency but also allow to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 1 May 2020

Juliana Pacheco Barbosa, Joisa Dutra Saraiva and Julia Seixas

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system…

3374

Abstract

Purpose

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system. Three mechanisms to achieve ambitious reductions in the greenhouse gas emissions from the power sector by 2030 and 2040 are assessed wherein treated as solar targets under ambitious reductions in the greenhouse gas emissions from the power sector. Then, three mechanisms to achieve these selected solar targets are suggested.

Design/methodology/approach

This paper reviews current and future incentive mechanisms to promote solar energy. An integrated energy system optimization model shows the most cost-efficient deployment level. Incentive mechanisms can promote renewable sources, aiming to tackle climate change and ensuring energy security, while taking advantage of endogenous energy resources potential. Based on a literature review, as well as on the specific characteristics of the Brazilian power system, under restrictions for the expansion of hydroelectricity and ambitious limitation in the emissions of greenhouse gases from the power sector.

Findings

The potential unexploited of solar energy is huge but it needs the appropriate incentive mechanism to be deployed. These mechanisms would be more effective if they have a specific technological and temporal focus. The solar energy deployment in large scale is important to the mitigation of climate change.

Originality/value

The value of the research is twofold: estimations of the cost-effective potential of solar technologies, generated from an integrated optimization energy model, fully calibrated for the Brazilian power system, while tacking the increasing electricity demand, the expected reduction of greenhouse gas emissions and the need to increase the access to clean and affordable energy, up to 2040; proposals of three mechanisms to deploy centralized PV, distributed PV and solar thermal power, taking the best experiences in several countries and the recent Brazilian cases.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 11 April 2018

Antero Ollila

The purpose of this paper is to analyze the scientific basis of the Paris climate agreement.

11219

Abstract

Purpose

The purpose of this paper is to analyze the scientific basis of the Paris climate agreement.

Design/methodology/approach

The analyses are based on the IPCC’s own reports, the observed temperatures versus the IPCC model-calculated temperatures and the warming effects of greenhouse gases based on the critical studies of climate sensitivity (CS).

Findings

The future emission and temperature trends are calculated according to a baseline scenario by the IPCC, which is the worst-case scenario RCP8.5. The selection of RCP8.5 can be criticized because the present CO2 growth rate 2.2 ppmy−1 should be 2.8 times greater, meaning a CO2 increase from 402 to 936 ppm. The emission target scenario of COP21 is 40 GtCO2 equivalent, and the results of this study confirm that the temperature increase stays below 2°C by 2100 per the IPCC calculations. The IPCC-calculated temperature for 2016 is 1.27°C, 49 per cent higher than the observed average of 0.85°C in 2000.

Originality/value

Two explanations have been identified for this significant difference in the IPCC’s calculations: The model is too sensitive for CO2 increase, and the positive water feedback does not exist. The CS of 0.6°C found in some critical research studies means that the temperature increase would stay below the 2°C target, even though the emissions would follow the baseline scenario. This is highly unlikely because the estimated conventional oil and gas reserves would be exhausted around the 2060s if the present consumption rate continues.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 2 January 2023

Jung Hee Noh and Heejin Park

This study aims to explore empirical evidence of the impact of greenhouse gas (GHG) emissions on stock market volatility.

2246

Abstract

Purpose

This study aims to explore empirical evidence of the impact of greenhouse gas (GHG) emissions on stock market volatility.

Design/methodology/approach

Using panel data of 35 Organization for Economic Co-operation and Development countries from 1992 to 2018, we conduct both fixed effects panel model and Prais-Winsten model with panel-corrected standard errors.

Findings

The authors document that there is a significant positive relationship between GHG emissions and stock market volatility. The results remain robust after controlling for potential endogeneity problems.

Originality/value

This study contributes to the literature in that it provides additional empirical evidence for the financial risk posed by climate change.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 21 June 2021

Liantao Hou, Yinsheng Yang, Xiaoyi Zhang and Chunming Jiang

The relationship between farm size and greenhouse gas (GHG) emissions has not been clearly defined. This paper aims to assess and compare the impact of farm size on greenhouse gas

1911

Abstract

Purpose

The relationship between farm size and greenhouse gas (GHG) emissions has not been clearly defined. This paper aims to assess and compare the impact of farm size on greenhouse gas (GHG) emissions derived from wheat and maize production in the North China Plain (NCP), one of the most important agricultural regions in China.

Design/methodology/approach

A field survey through face-to-face interviews was conducted to collect the primary data, and life cycle assessment method, a worldwide comparable framework, was then adopted to characterize the farm-size effect on greenhouse gas (GHG) wheat and maize production in NCP.

Findings

It was confirmed that GHG emissions from N fertilizer production and use were the primary contributor to total carbon footprint (CF). As farm size increased, maize yield increased but wheat yield barely changed, while area-scaled and yield-scaled CF declined for both crops. These results were supposed to relate to utilize the inputs more efficiently resulting from increased application of modern agriculture methods on larger operations. It was also found maize not only had higher grain yields, but possessed much smaller CFs. More notably, the reduction of CF with farm size seemed to be more sensitive for maize as compared to wheat. To further mitigate GHG emissions, farm size should better be larger for wheat than for maize.

Originality/value

This study provides useful information guide for Chinese agriculture in increasing crop production, raising farm income and relieving environmental burdens caused by the misuse of agricultural resources.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 10 of 593