Search results

1 – 10 of 48
Article
Publication date: 22 February 2021

Devender Sheoran, Rajesh Kumar, Seema Thakran and Kapil Kumar Kalkal

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under…

Abstract

Purpose

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under the purview of the Green-Naghdi model II of generalized thermoelasticity. The formulation is subjected to a mechanical load.

Design/methodology/approach

The normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

For isothermal and insulated boundaries, discussions have been made to highlight the influences of rotational speed, nonlocality, temperature-dependent properties and time on the physical quantities.

Originality/value

The exact expressions for the displacement components, stresses and temperature field are obtained in the physical domain. These are also calculated numerically for a magnesium crystal-like material and depicted through graphs to observe the variations of the considered physical quantities. The present study is useful and valuable for the analysis of problems involving mechanical shock, rotational speed, nonlocal parameter, temperature-dependent properties and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 April 2018

Siddhartha Biswas and Soumen Shaw

The purpose of this paper is to analyze the thermal shock response on the deformation of circular hollow cylinder in a thermodynamically consistent manner.

Abstract

Purpose

The purpose of this paper is to analyze the thermal shock response on the deformation of circular hollow cylinder in a thermodynamically consistent manner.

Design/methodology/approach

The investigation is carried out under the light of generalized thermoelasticity theory with energy dissipation. In order to obtain the analytical expressions of the components of stress and strain fields, appropriate integral transform technique is adopted and the salient features are emphasized.

Findings

It has been observed that the existence of energy dissipation can minimize the development of the stress components into the cylindrical wall. Since more amount of heat is propagate into the medium in a short period of time consequently, the medium deformed in a high rate in presence of energy dissipation. Two special phenomena are also revealed in the particular cases.

Originality/value

The numerical simulated results are demonstrated through a numerous diagrams and some important observations are explained. This work may be helpful for those researchers who are devoted on several types of heat or fluid flow into the pipeline made with anisotropic solids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 November 2020

Sunita Deswal, Ravinder Poonia and Kapil Kumar Kalkal

The present investigation is concerned with the two-dimensional deformations in an inhomogeneous fiber-reinforced thermoelastic medium under the influence of gravity in the…

Abstract

Purpose

The present investigation is concerned with the two-dimensional deformations in an inhomogeneous fiber-reinforced thermoelastic medium under the influence of gravity in the context of Green–Lindsay theory.

Design/methodology/approach

Material properties are supposed to be graded in x-direction, and normal mode technique is adopted to obtain the exact expressions for the temperature field, displacement components and stresses.

Findings

Numerical computations have been carried out with the help of MATLAB software, and the results are depicted graphically to observe the disturbances induced in the considered medium. Comparisons made within the theory of the physical quantities are shown in figures to highlight the effects of fiber reinforcement, inhomogeneity parameter, gravity and time.

Originality/value

In the present work, we have investigated the effects of fiber reinforcement, inhomogeneity parameter, gravity and time in an inhomogeneous, fiber-reinforced thermoelastic medium under the influence of gravity. Although various investigations do exist to observe the disturbances in a thermoelastic medium under the effects of different parameters, the work in its present form i.e. thermally induced vibrations in an inhomogeneous fiber-reinforced thermoelastic material with gravity has not been studied till now. The present work is useful and valuable for analysis of problems involving thermal shock, gravity parameter, fiber reinforcement, inhomogeneous and elastic deformation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2009

X.Q. Zhang

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled cylindrical…

Abstract

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled cylindrical tubes. Here, two kinds of models based upon the Cauchy stress and the Kirchhoff stress will be treated. The reduced systems of differential equations of these rate constitutive equations are derived and studied for Jaumann, Green‐ Naghdi, logarithmic and Truesdell stress rates, separately. Analytical solutions in some cases and numerical solutions in all cases are obtained using these reduced systems. Comparisons between the residual deformations are made for different cases. It may be seen that only the logarithmic stress rate results in no residual deformation. In particular, results indicate that Green‐Naghdi rate would generate unexpected residual deformation effect that is essentially different from that resulting from Jaumann rate. On the other hand, it is realized that this study accomplishes an alternative, direct proof for the nonintegrability problem of Truesdell’s hypoelastic rate equation with classical stress rates. This problem has been first treated successfully by Simo and Pister in 1984 using Bernstein’s integrability conditions. However, such treatment needs to cope with a coupled system of nonlinear partial differential equations in Cauchy stress. Here, a different idea is used. It is noted that every integrable hypoelastic equation is just an equivalent rate form of an elastic equation and hence should produce no residual deformations under every possible stress cycle. Accordingly, a hypoelastic model with a stress rate has to be non‐integrable, whenever a stress cycle can be found under which this model generates residual deformation. According to this idea of reductio ad absurdum, a well‐designed stress cycle is introduced and the corresponding residual deformations are calculated. Unlike the treatment of Bernstein’s integrability conditions, it may be a simple and straightforward matter to calculate the final deformations for a given stress cycle. This has been done in this study for several well‐known stress rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2009

Mohamed Othman and Ya Qin Song

The theory of generalized thermoelasticity, based on the Lord‐Shulman theory (LS) with one relaxation time and the Green‐Naghdi theory (GN) (of type II) without energy…

Abstract

The theory of generalized thermoelasticity, based on the Lord‐Shulman theory (LS) with one relaxation time and the Green‐Naghdi theory (GN) (of type II) without energy dissipation, as well as the classical dynamical coupled theory (CD), is used to study the electromagneto‐thermoelastic interactions in a semi‐infinite perfectly conducting solid subjected to a thermal shock on its surface. The entire elastic medium is rotating with a uniform angular velocity. There acts an initial magnetic field parallel to the plane boundary of the half‐space. The medium deformed because of thermal shock, the rotation and due to the application of the magnetic field. The normal mode analysis is used to obtain the exact expressions for the considered variables. The distributions of the variables considered are represented graphically for two different cases. From the distributions, the wave type heat propagation in the medium can be found. This indicates that the generalized heat conduction mechanism is completely different in essence from the classic Fourier’s law. Comparisons are made with the results predicted by the three theories in the presence and absence of rotation and a magnetic field.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 August 2019

Mohamed I.A. Othman, Samia Said and Marin Marin

In the present paper, the three-phase-lag (3PHL) model, Green-Naghdi theory without energy dissipation (G-N II) and Green-Naghdi theory with energy dissipation (G-N III) are used…

Abstract

Purpose

In the present paper, the three-phase-lag (3PHL) model, Green-Naghdi theory without energy dissipation (G-N II) and Green-Naghdi theory with energy dissipation (G-N III) are used to study the influence of the gravity field on a two-temperature fiber-reinforced thermoelastic medium.

Design/methodology/approach

The analytical expressions for the displacement components, the force stresses, the thermodynamic temperature and the conductive temperature are obtained in the physical domain by using normal mode analysis.

Findings

The variations of the considered variables with the horizontal distance are illustrated graphically. Some comparisons of the thermo-physical quantities are shown in the figures to study the effect of the gravity, the two-temperature parameter and the reinforcement. Also, the effect of time on the physical fields is observed.

Originality/value

To the best of the author’s knowledge, this model is a novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium, and gravity plays an important role in the wave propagation of the field quantities. It explains that there are significant differences in the field quantities under the G-N II theory, the G-N III theory and the 3PHL model because of the phase-lag of temperature gradient and the phase-lag of heat flux.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2018

Mohamed I.A. Othman, S.M. Abo-Dahab and Haneen A. Alosaimi

The purpose of this paper is to study a model of the equations of a two-dimensional problem in a half space, whose surface in a free micropolar thermoelastic medium possesses…

Abstract

Purpose

The purpose of this paper is to study a model of the equations of a two-dimensional problem in a half space, whose surface in a free micropolar thermoelastic medium possesses cubic symmetry as a result of inclined load. The problem is formulated in the context of Green-Naghdi theory of type II (G-N II) (without energy dissipation) and of type III (G-N III) (with energy dissipation) under the effect of magnetic field.

Design/methodology/approach

The normal mode analysis is used to obtain the exact expressions of the physical quantities.

Findings

The numerical results are given and presented graphically when the inclined load and magnetic field are applied. Comparisons are made with the results predicted by G-N theory of both types II and III in the presence and absence of the magnetic field and for different values of the angle of inclination.

Originality/value

In the present work, the authors study the influence of inclined load and magnetic field in a micropolar thermoelastic medium in the context of the G-N theory of both types II and III. Numerical results for the field quantities are obtained and represented graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 April 2020

Ashraf M. Zenkour

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized…

77

Abstract

Purpose

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized thermoelasticity theory have been proposed.

Design/methodology/approach

Some models with and without energy dissipation have been presented as well as the simple forms of Green–Naghdi (G–N) theories. These novel multi- and single-/dual-phase-lag models are presented to investigate the thermo-diffusion of the solid cylinder. The closed-form solution of thermo-diffusion governing equations of solid cylinder has been obtained to deduce all field variables.

Findings

A comparison study between the simple G–N II and III models and their improved models has been presented. The validations of outcomes are acceptable and so benchmarks are reported to help other investigators in their future comparisons.

Originality/value

The modified Green and Naghdi theories of types II and III are presented to get novel and accurate models of single- and dual-phase-lag of multiterms. The heat of mass diffusion equation as well as the constitutive equations for the stresses and chemical potential of a solid cylinder is added to the present formulation. The system of three differential coupled equations is solved, and all field variables are obtained for the thermal diffusion of the solid cylinder. Some validation examples and applications are presented to compare the simple and modified Green and Naghdi theories of types II and III. Sample plots are illustrated along the radial direction of the solid cylinder. Some results are tabulated to serve as benchmark results for future comparisons with other investigators. The reported and illustrated results show that the simple G–N II and III models yield the largest values of all field quantities. The single-phase-lag models give the smallest values. However, the dual-phase-lag model yields results that are intermediate between those of the simple and single-phase-lag G–N models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 September 2022

Samia M. Said, Mohamed I.A. Othman and Mohamed G. Eldemerdash

In the present article, the three-phase-lag (3PHL) model and the Green-Naghdi theory of types II, III with memory-dependent derivative is used to study the effect of rotation on a…

Abstract

Purpose

In the present article, the three-phase-lag (3PHL) model and the Green-Naghdi theory of types II, III with memory-dependent derivative is used to study the effect of rotation on a nonlocal porous thermoelastic medium.

Design/methodology/approach

In this study normal mode analysis is used to obtain analytical expressions of the physical quantities. The numerical results are given and presented graphically when mechanical force is applied.

Findings

The model is illustrated in the context of the Green-Naghdi theory of types II, III and the three-phase lags model. Expressions for the physical quantities are solved by using the normal mode analysis and represented graphically.

Originality/value

Comparisons are made with the results predicted in the absence and presence of the rotation as well as a nonlocal parameter. Also, the comparisons are made with the results of the 3PHL model for different values of time delay.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 August 2016

Mohamed Ibrahim A Othman and Mohamed I. M. Hilal

The purpose of this paper is to investigate the influence of the gravity and the magnetic fields on the plane waves in a homogenous, linear and isotropic thermoelastic medium…

92

Abstract

Purpose

The purpose of this paper is to investigate the influence of the gravity and the magnetic fields on the plane waves in a homogenous, linear and isotropic thermoelastic medium subjected to the laser pulse heating.

Design/methodology/approach

The problem has been solved analytically and numerically by using the normal mode analysis.

Findings

Numerical results for the temperature, the displacement components, the stress components and the volume fraction were presented graphically and analyzed the results. The graphical results indicate that the effect of gravity and magnetic fields are observable physical effects on the porous thermoelastic material heated by a laser pulse. Comparisons are made with the results in the absence and presence of the gravity and the magnetic fields, also at various times.

Originality/value

In the present work, the authors shall formulate a 2-D problem for the propagation of plane waves on the porous thermoelastic material influenced by the gravity and the magnetic fields subjected to a laser pulse heating act as a thermal shock. A comparison is also made between the two types II and III of Green-Naghdi theory in the absence and the presence of the gravity and the magnetic fields. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 48