Search results

1 – 10 of 415
Article
Publication date: 7 February 2017

M.Y.L. Chew, Sheila Conejos and Ashan Senel Asmone

The aim of this paper is to present a research framework for the green maintainability of buildings. This study makes the case for the development of a new concept called “green…

1679

Abstract

Purpose

The aim of this paper is to present a research framework for the green maintainability of buildings. This study makes the case for the development of a new concept called “green maintainability”. The paper also identifies and discusses the knowledge gap concerning green facilities management (FM). As an integral part of green FM, the economic, environmental and social impacts and opportunities of green maintainability throughout the total life cycle of the facility are also highlighted.

Design/methodology/approach

The little attention paid to the maintainability of green buildings has resulted in losses of lives due to occupational health and safety hazards as well as high operation and maintenance costs. To address this issue, this study has conducted a literature review to determine the relevant background knowledge and provides a conceptual framework that will aid in conceptualizing the green maintainability of buildings and the development of a research framework for the furtherance of this concept.

Findings

This paper finds that there is little research on the maintainability of green buildings, and the studies about the maintainability of green features are nonexistent in current research. This study confirms the knowledge gap of this little-researched area and draws from it the formulation of a research framework for the green maintainability of buildings to ensure green FM. Emerging literature on green practices and methods is currently receiving attention from academia, as well as building and construction practitioners, and can valuably contribute to the existing theories, practices and methods concerning building maintainability and facilities management.

Originality/value

This study develops the novel concept of green maintainability, which integrates maintainability and green FM at the planning/design stage. The proposed research framework is the first attempt to investigate the green maintainability of different typologies of buildings and especially green building technologies.

Article
Publication date: 8 August 2016

Michael Y.L. Chew and Sheila Conejos

The use of green wall technology in green buildings is a growing trend; however, more research is required about their maintainability, taking into account that maintainability at…

1878

Abstract

Purpose

The use of green wall technology in green buildings is a growing trend; however, more research is required about their maintainability, taking into account that maintainability at the design stage is a valuable strategy in achieving building efficiency and sustainability. Thus, the purpose of this paper is to determine the issues in operating and maintaining green walls, particularly in tropical areas like Singapore, leading to the development of a green maintainability framework.

Design/methodology/approach

This research uses a qualitative method that combines a thorough and systematic literature review, multiple case studies, field observation surveys and selected instrumental case studies with building plan appraisal and interviews to investigate the potential issues associated with the maintainability of green walls in tropical areas like Singapore.

Findings

The findings show that technical and environmental issues/defects are prevalent in the operation and maintainability of green wall technologies applied in green buildings located in tropical regions. Proper considerations of these findings will encourage green building designers and facilities managers to collaborate in the effective implementation of operations and maintenance of green building technologies.

Originality/value

This research gives new and significant information while identifying a clear knowledge gap. The paper recommends the formulation of a green maintainability framework with a set of design criteria that will serve as a benchmark in the future design of green walls. The green maintainability framework would be a valuable addition to green facilities management in ensuring the long-term maintainability and sustainability of existing and new green walls in tropical areas specifically in Singapore.

Details

Structural Survey, vol. 34 no. 4/5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 13 July 2021

Sheila Conejos, Michael Y.L. Chew, Karlyn Tay, Stephen Tay and Sufiana Safiena

The maintenance of green building technologies such as building-integrated photovoltaic (BIPV) is a challenge due to the non-existence of maintainability considerations during the…

Abstract

Purpose

The maintenance of green building technologies such as building-integrated photovoltaic (BIPV) is a challenge due to the non-existence of maintainability considerations during the design stage. This led to building defects which accounts to high expenditures throughout the building's lifecycle. The use of BIPV in buildings is an emergent trend, and further research is requisite for their maintainability. This paper assesses the performance and maintainability of BIPV façade applications based on the green maintainability design considerations.

Design/methodology/approach

Qualitative method is undertaken in this study, which includes field surveys, instrumental case studies and stakeholder interviews to probe the issues linked with the BIPV's maintainability.

Findings

Findings have shown some technical defects discovered in BIPV applications in tropical areas, as well as issues on cost, aesthetics and implementation are the main causes for the low adoption of BIPV in Singapore.

Originality/value

Understanding the research outcomes will embolden designers and allied professionals to team up in ensuring the long-term maintainability and sustainability of green building technologies. This research gives recent and important information in the design, installation and maintainability of BIPV, as well as good practices that would add value to facilities management and to the design of green building technologies.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 June 2019

Sheila Conejos, Michael Yit Lin Chew and Fikril Hakim Bin Azril

Vertical greenery systems (VGS) have been a widely accepted design strategy that contributes to creating sustainable built environments. However, green building technologies (e.g…

Abstract

Purpose

Vertical greenery systems (VGS) have been a widely accepted design strategy that contributes to creating sustainable built environments. However, green building technologies (e.g. VGS) have grown in complexity which poses maintainability challenges. Designing with maintainability in mind is crucial in delivering efficient and sustainable buildings. This paper aims to assist designers and allied professionals in terms of integrating maintainability and sustainable design in developing high-rise VGS directly from its design inception.

Design/methodology/approach

The study is grounded on the “Green Maintainability” concept which link maintainability, sustainability and facility management right at the outset. The Green Maintainability factors are translated into critical design criteria which are used to analyze the selected instrumental case studies to evaluate the high-rise VGS performance and maintainability potential. A qualitative approach via the triangulation of data collected from relevant literatures, field surveys and walkthrough interviews is undertaken.

Findings

Findings have shown that the major VGS defects which are mostly occurring in the case studies are issues concerning fallen leaves and dirt accumulation; safety issues during cleaning and repairs; insufficient maintenance access; algae/ mould growth; withering plants; water stagnation/ ponding; poor/faulty irrigation and water dripping and unavailability of natural elements. Best practices and lessons learned revealed few design oversight and technical issues concerning high-rise VGS façade implementation. While maintenance cost, biodiversity and lack of coordination among involved professionals are the additional issues which emerged during the stakeholders’ walkthrough interviews.

Originality/value

Current researches conducted on the maintainability of green building technologies (e.g. high-rise VGS) are still few. This research study is the first comprehensive assessment to determine the green maintainability potential and performance of high-rise VGS in tropical conditions.

Article
Publication date: 8 May 2017

Michael Y.L. Chew, Sheila Conejos and Jessie Sze Long Law

Nanostructured titanium dioxide (TiO2) coatings can potentially address the current surge in façade cleaning cost, maintenance and labour problems. The purpose of this paper is to…

Abstract

Purpose

Nanostructured titanium dioxide (TiO2) coatings can potentially address the current surge in façade cleaning cost, maintenance and labour problems. The purpose of this paper is to investigate potential maintainability issues and design challenges concerning the effective performance of TiO2 façade coatings’ hydrophilic properties, especially in tropical environments such as Singapore. This paper aims to establish a list of green maintainability design criteria to help minimise future TiO2 façade coating issues when this coating is applied on commercial buildings with concrete and stonemasonry façade materials.

Design/methodology/approach

A mixed-mode approach that includes a literature review, site investigation, instrumental case studies and expert interviews is used in this study.

Findings

TiO2 coatings help improve façade performance whilst offering environmental benefits to society. This study reports that green maintainability design criteria are vital requirements in designing sustainable buildings at the outset. The identified defects and issues will aid in ensuring the effectiveness of TiO2 application in building façades.

Originality/value

This study acts as a foundation for future researchers to strengthen this little researched area, serves as a useful guide in preventing possible TiO2 coating issues and promotes industry awareness of the use of TiO2 façade coatings.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 11 March 2021

Sheila Conejos, Aristotle Ubando and Michael Yit Lin Chew

The self-cleaning properties of nanostructured titanium dioxide facade coatings are useful in Singapore's tropical climate. However, its potential maintenance issues need to be…

Abstract

Purpose

The self-cleaning properties of nanostructured titanium dioxide facade coatings are useful in Singapore's tropical climate. However, its potential maintenance issues need to be determined right at the design stage. The purpose of this paper is to highlight the development of the design for maintainability tool which is a multicriteria design decision score sheet that evaluates the maintainability potential of nano-facade coating applications on high-rise façades with concrete and stonemasonry finishes and curtain walls.

Design/methodology/approach

Quantitative methods (expert and practitioner surveys) are conducted in this research study. Analytic hierarchy process (AHP) and sensitivity analysis were used to develop a robust Design for Maintainability tool.

Findings

Safety measures indicator received the highest weighted score by experts, while the maximizing performance, minimizing risk, minimizing negative environmental impact and minimizing consumption of matter and energy were the top ranking main criteria by both experts and practitioners. The top ranked design for maintainability sub-criteria identified by practitioners and experts were risk management, maintenance considerations, climatic conditions, safety measures, lifecycle cost and maintenance access, sun's path, rainfall intensity, biological growth measures and building age profile.

Originality/value

Most researches on the maintainability of nano-façade coatings uses experimentation to test the durability of nano-façade coatings, while this study focuses on design based empirical data such as establishing and ranking the list of design for maintainability criteria or indicators to minimize future defects and maintenance issues. The design for maintainability tool contributes to the maintainability of nano-façade coatings leading to maximizing its performance while minimizing cost, risks, resource consumption and negative environmental impact.

Details

Built Environment Project and Asset Management, vol. 12 no. 1
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 17 September 2019

Chukwuka Christian Ohueri, Wallace Imoudu Enegbuma and Hadina Habil

Green building development practices reduce carbon footprint and promote sustainability in the built environment. To foster green building construction in Malaysia, several…

Abstract

Purpose

Green building development practices reduce carbon footprint and promote sustainability in the built environment. To foster green building construction in Malaysia, several strategies and sustainability metrics like the Malaysian Carbon Reduction and Environmental Sustainability Tool (MyCREST) have been established. Yet, the implementation of green office building development in Sarawak still remains low. Therefore, the purpose of this paper is to develop MyCREST Embedded Framework (MEF) for enhancing the adoption of green office building construction in Sarawak.

Design/methodology/approach

To achieve the research aim, document analysis of the overarching MyCREST Reference Guide was conducted. Then, questionnaire was used to survey 120 green construction professionals in Kuching, the capital of Sarawak. Afterwards, data from the questionnaire was analyzed using Statistical Package for Social Science software version 22. As a result, the significant strategies for enhancing the adoption of green office building construction in Sarawak were identified, and ranked hierarchically using the Relative Importance Index.

Findings

The established significant strategies include: government policies and incentives, sustainable technological practices, defined process for executing green building projects and adequate information for the public. Moreover, this study recommends MyCREST as the suitable Green Building Assessment Tool for developing green office buildings in Sarawak due to its integration of carbon reduction strategies with sustainability indicators.

Research limitations/implications

This study is limited to Kuching; hence future study should be extended to other cities in Sarawak.

Originality/value

Based on the findings, the MEF is developed to enlighten the industry practitioners on the approaches that will elevate green office building development in Sarawak.

Details

Built Environment Project and Asset Management, vol. 10 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 29 April 2021

Koorosh Gharehbaghi, Maged Georgy, Kathryn Mary Robson, Sara Wilkinson and Ken Farnes

Through an empirical study, this research proposes a multi-dimensional assessment method for Sustainable Building Design (SBD). This approach is adopted to investigate and…

Abstract

Purpose

Through an empirical study, this research proposes a multi-dimensional assessment method for Sustainable Building Design (SBD). This approach is adopted to investigate and evaluate the current practices of SBD and to provide a basis for refining such processes while reducing existing shortfalls. In doing so, a holistic sustainable framework for rating the sustainable performance of buildings is proposed.

Design/methodology/approach

To achieve the aforementioned purpose, this research (1) investigates the most current trends in SBD including the use of Building Information Modelling (BIM); (2) examines the practical issues of SBD; (3) proposes a multi-dimensional assessment method; and (4) compares 18 separate case studies in the three countries of Australia, United Kingdom and USA, as part of the SBD implementation. To compare these case studies, an additional SBD tool, Green Building Rating and Certification System (GBELS) was carefully selected and applied. Five core values of SBD were identified based on functionality, accessibility and productivity, which align with the GBELS outcomes.

Findings

This research found that, for the 18 examined buildings, the main issues in SBD in the three countries concerned environmental and ecological issues. These included the impacts of buildings on the environment, as well as issues concerning the buildings' life cycle analysis and assessment. It was also determined that energy usage, pollution reduction and climate change concerns were important inclusions in establishing these buildings, particularly in the USA.

Originality/value

To support the research aim, this paper explores the most innovative trends in SBD assessments including their Structural Health Monitoring (SHM), grade (stars) classification, Relative Weight (RW) and particularly GBELS. GBELS was selected for this research, since it is relatively new and there is little available literature discussing its adaptation. Accordingly, this research further evaluates the application of GBELS as a part of versatility in SBD multi-dimensional assessment method. As the basis of these tests, a total of 18 separate case studies are closely evaluated.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 October 2021

Laura Blackburne, Koorosh Gharehbaghi and Amin Hosseinian-Far

The aims and objectives of this research are to establish whether or not the transition into green building in high-rise construction is practical. This is after considering…

Abstract

Purpose

The aims and objectives of this research are to establish whether or not the transition into green building in high-rise construction is practical. This is after considering several perspectives including financial, economic, environmental, and social. This subsequently leads to an evaluation on whether or not the continuation with a standard conventional build of high-rise buildings remains to be the most feasible option. Such objectives, therefore, aim to allow for validation of how and why high-rise construction designs are impacted through green buildings effects.

Design/methodology/approach

Through six defined steps, the methodology commences with an introductory section of what it means to build green. This section is further broken down to evaluate what factors are involved in constructing a green building. Furthermore, the life cycle energy (LCE) is used as a framework to evaluate the knock-on effects of green buildings and subsequent high-rise construction design implications.

Findings

Through defining the ongoing relationship of green materials and sustainable design, various implications for high-rise constructions were discovered. First and foremost, it was determined that the LCE is the central consideration for any high-rise building design. In evaluating the LCE, and overall operating energy of the 50-year cycle of a building was carried out. As the results showed, the operating energy represents around 85% of the total energy that is consumed at the end of the 50 years cycle of the building. Precise LCE calculation can lead to a more efficient design for high-rise buildings. As a result, an increased understanding of the current status of green buildings within the construction industry is paramount. This understanding leads to a better insight into the contributing factors to green building in high-rise construction and the construction industry in general.

Originality/value

The potential contribution that can be gained from this research is the awareness that is raised in the research and development of green buildings in high-rise construction. This can be achieved by using certain materials such as new energy-efficient building materials, recycled materials and so on. This research will contribute to defining a new way of sustainable buildings, particularly for high-rise construction. The outcome of the research will be beneficial for practitioners such as design engineers and other related professions.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 March 2022

Laura Blackburne, Koorosh Gharehbaghi, Ken Farnes, Olivia Moore and Melisa Russo

The purpose of this paper is to evaluate the green building certification systems. In doing so, a validation process, using confirmatory factor analysis (CFA), was undertaken.

Abstract

Purpose

The purpose of this paper is to evaluate the green building certification systems. In doing so, a validation process, using confirmatory factor analysis (CFA), was undertaken.

Design/methodology/approach

An extensive literature review was conducted to highlight the paramount aspects of green building certification systems. Then, using a grounded theory, key findings of the initial literature review were explored. This was necessary to form a broad theoretical framework. Finally, CFA was performed to evaluate various green building certification systems.

Findings

Initially, it was noted that accreditation process was the central key for effective building certification systems, particularly at the international level. Further, using CFA, it was also determined that to increase the sustainable performance of the green building certification, meeting the increasing expectation of the system user is paramount.

Practical implications

When evaluating the green building certification systems, it is recommended to focus on a specific aspect of the programmes holistically. This needs to be done particularly towards delivering a clear message to the stakeholders globally; doing so may alleviate the many challenges of green building certifications.

Originality/value

Currently, various green building certification systems have been developed for local purposes. This raises the question of the adaptability of these systems across varying climates and geography in differing regions. Using CFA, this research will examine various green building certification systems to evaluate their applicability at a global level.

Details

Journal of Science and Technology Policy Management, vol. 14 no. 4
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 10 of 415