Search results

1 – 10 of 352
Article
Publication date: 3 April 2019

Yanqiu Xia, Wenyi Zhang, Zhengfeng Cao and Xin Feng

This paper aims to explore the leaf-surface wax as green lubricant additive and compare the tribological properties between coastal and inland leaf-surface waxes of the same…

Abstract

Purpose

This paper aims to explore the leaf-surface wax as green lubricant additive and compare the tribological properties between coastal and inland leaf-surface waxes of the same species plant.

Design/methodology/approach

The leaf-surface waxes were extracted from the leaves of Robinia pseudoacacia cv. Idaho and Populus nigra in coastal and inland areas, and then the compositions of the four kinds of leaf-surface waxes were characterized using a gas chromatography–mass spectrometry. The tribological properties of these leaf-surface waxes as lubricant additives in the base oil of synthetic ester (SE) were investigated by an MFT-R4000 reciprocating friction and wear tester. As well as the surface morphologies and chemical compositions of the wear scars were characterized by a scanning electron microscope and time-of-flight secondary ion mass spectrometry, respectively.

Findings

The results indicate that all the leaf-surface waxes as additives can effectively improve the friction reduction and anti-wear performances of SE for steel–aluminum friction pairs. Therein, coastal leaf-surface waxes have better tribological performances than inland leaf-surface waxes, which are attributed to that the leaf-surface waxes extracted from coastal plants can form a better protective film on the worn surface throughout the friction process.

Originality/value

This paper investigated a new kind of environmentally friendly lubricant additive and compared the tribological properties of the leaf-surface wax extracted from coastal and inland plants. The associated conclusions can provide a reference to explore the tribological performances of leaf-surface wax as green lubricant additive.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2015

Yujuan Zhang, Yaohua Xu, Yuangbin Yang, Shengmao Zhang, Pingyu Zhang and Zhijun Zhang

The purpose of this paper is to synthesize oil-soluble copper (Cu) nanoparticles modified with free phosphorus and sulfur modifier and investigate its tribological properties as…

Abstract

Purpose

The purpose of this paper is to synthesize oil-soluble copper (Cu) nanoparticles modified with free phosphorus and sulfur modifier and investigate its tribological properties as environment-friendly lubricating oil additives.

Design/methodology/approach

To improve the anti-oxidation properties of these nanoparticles, two kinds of surface modifiers, oleic acid and oleylamine were used simultaneously. The morphology, composition, structure and thermal properties of as-synthesized Cu nanoparticles were investigated by means of transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometry and differential thermal and thermogravimetric analysis. The tribological properties of as-synthesized Cu nanoparticles as an additive in liquid paraffin were evaluated with a four-ball friction and wear tester.

Findings

It has been found that an as-synthesized Cu nanoparticle has a size of 2-5 nm and can be well dispersed in organic solvents. Tribological properties evaluation results show that as-synthesized Cu nanoparticles possess excellent anti-wear properties as an additive in liquid paraffin. The reason lies in that as-synthesized surface-capped Cu nanoparticles are able to deposit on sliding steel surface and form a low-shearing-strength protective layer thereon, showing promising application as an environmentally acceptable lubricating oil additive, owing to its free phosphorus and sulfur elements characteristics.

Originality/value

Oil-soluble surface-modified Cu nanoparticles without phosphorus and sulfur were synthesized and its tribological properties as lubricating oil additives were also investigated in this paper. These results could be very helpful for application of Cu nanoparticles as environment-friendly lubricating oil additives.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 January 2020

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Hilmi Amiruddin, Mohd Rody Bin Mohamad Zin and S. Liza

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Abstract

Purpose

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Design/methodology/approach

The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads.

Findings

The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene.

Originality/value

The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 January 2022

Valéry Tusambila Wadi, Özkan Özmen, Abdullah Caliskan and Mehmet Baki Karamış

This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs).

Abstract

Purpose

This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs).

Design/methodology/approach

A two-step method with surfactant was selected to prepare nanolubricants in concentrations of 0.025, 0.05, 0.1 and 0.5 wt%. Thermal conductivity and dynamic viscosity of nanofluids were ascertained over the temperature range of 25–70 °C, with an increment step of 5 °C, using a KD2-Pro analyser device and a digital viscometer MRC VIS-8. Additionally, four different MLMs, including Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), were used for predicting dynamic viscosity and thermal conductivity by using nanoparticle concentration and temperature as input parameters.

Findings

According to the achieved results, the dynamic viscosity and thermal conductivity of nanolubricants mostly increased with the rise of nanoparticle concentration in the base oil. All the proposed models, especially GPR with root mean square error mean values of 0.0047 for dynamic viscosity and 0.0016 for thermal conductivity, basically showed superior ability and stability to estimate the viscosity and thermal conductivity of nanolubricants.

Practical implications

The results of this paper could contribute to optimising the cost and time required for modelling the thermophysical properties of lubricants.

Originality/value

To the best of the author’s knowledge, in this available literature, there is no paper dealing with experimental study and prediction of dynamic viscosity and thermal conductivity of HNTs-based nanolubricant using GPR, ANN, SVM and DT.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2018

Binnur Sagbas

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological…

Abstract

Purpose

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological behavior of PEEK rubbed with DIN2080 tool steel, under prepared green lubricating condition.

Design/methodology/approach

In this study, tiribological performance of PEEK against the DIN2080 tool steel is investigated with green lubricant. Coconut oil was used as green lubricant and 4 per cent wt. h-BN powder was added as lubricant additive into the coconut oil. Reciprocal pin-plate tribological test were applied under dry, coconut oil and coconut oil+h-BN lubrication condition. Friction coefficients were recorded and wear behavior of the samples investigated by mass loss measurement and topographical inspection of wear track by optical profilometer.

Findings

Using coconut oil as lubricant provided 80 per cent reduction of friction coefficient and 33.4 per cent reduction of wear rate. Addition of h-BN into the coconut oil provide 84 per cent reduction of friction coefficient and 56 per cent reduction of wear rate. The results showed that vegetable oil is promising lubricant for sustainable manufacturing. h-BN serves to increase lubricant performance and decrease wear of the surfaces.

Practical implications

Petrochemical lubricants are one of the major sources of environmental pollution and health hazards. Development and use of environmental and health friendly lubricants support sustainability and reduce wear, friction and energy consumption. With this consciousness, recent studies have focused on green tribology and green lubricants such as vegetable oils, ionic liquid bio-lubricants and bio-based polymers.

Originality/value

In literature study coconut oil was proposed as green lubricant while h-BN powder was proposed as solid lubricant. However, applicability of h-BN powder in coconut oil has not been explored yet. Moreover, wear and friction property of PEEK material with DIN 2080 tool steel pair surface has not been studied yet with green lubricants.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2002

Otto Rohr

Bismuth is relatively little known in general; however, it has been known since the fifteenth century in Germany and was called by Paracelsus “Bismutum”. With very similar…

1750

Abstract

Bismuth is relatively little known in general; however, it has been known since the fifteenth century in Germany and was called by Paracelsus “Bismutum”. With very similar properties to lead, it could be called the “twin brother of lead”, but bismuth is considered non‐toxic and used in cosmetics and pharmaceuticals. It is really a unique metal, considered as a metal within the periodic table of elements, but has more similarity to semimetals than to metals. Bismuth replaces the formerly and widely used lead in EP‐greases and EP‐lubricants giving better properties to them, even using down to half of the metal concentration. Bismuth has very high synergism to sulphur, the oldest known element. So, the combination of the oldest known element sulphur with the newest “green and ecologically clean” metal Bismuth – is actually the modern and metallic extreme pressure technology – that follows the formerly used, during many decades, sulphur‐lead‐technology – but being non‐toxic.

Details

Industrial Lubrication and Tribology, vol. 54 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 May 2022

Arun Kumar Bambam, Anil Dhanola and Kishor Kumar Gajrani

Nowadays, ionic liquids (ILs) are used as lubricant additives because of their ability to improve tribological characteristics. However, majority of the ILs contains halogen-based…

Abstract

Purpose

Nowadays, ionic liquids (ILs) are used as lubricant additives because of their ability to improve tribological characteristics. However, majority of the ILs contains halogen-based anions. They are extremely sensitive to moisture and produce detrimental halides and halogen acids when reacted with moisture and water. These halides and halogen acids are harmful to the health and environment of the operator’s. This paper aims to study four different lubricants including two halogen-based ILs blended in canola oil and two phosphonium-based halogen-free ILs blended in canola oil and in pure canola oil.

Design/methodology/approach

Viscosity and contact angle were measured by using rheometer and contact angle goniometer, respectively. Machining experiments were performed using turning centre with four different lubricants at two different cutting speeds and temperatures, and the machining forces, tool morphology and roughness of the machined surface were analysed.

Findings

The results showed that the inclusion of 1% phosphonium-based halogen-free ILs blended in canola oil increased the viscosity by 44.8% and reduced the cutting and thrust force by 21.7% and 26.8%, respectively, compared to pure canola oil lubricant. Microscopic analysis of tool showed lower adhesive and abrasive wear when machined with phosphonium-based halogen-free ILs blended in canola oil. The workpiece surface roughness reduced by 32% for phosphonium-based halogen-free ILs blended in canola oil compared with pure canola oil.

Originality/value

Halogen-free ILs are possible green lubricants, as they do not contain harmful elements such as F, S, B and Cl like halogen-based ILs. To the best of the authors’ knowledge, this is presumably the first work which shows machining performance of halogen-free ILs as lubricant additives.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 May 2023

Soumya Ranjan Guru, Chetla Venugopal and Mihir Sarangi

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the…

Abstract

Purpose

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the present investigation, soybean oil is served as the foundational oil due to its eco-friendliness and status as a vegetable oil with two additives, named polytetrafluoroethylene (PTFE) and molybdenum disulfide (MoS2).

Design/methodology/approach

As additives, PTFE and MoS2 are used; PTFE is renowned for its anti-friction (AF) properties, while MoS2 is a solid lubricant with anti-wear (AW) properties. This investigation examines the synergistic impact of AF and AW additions in vegetable oil. The lubricity of the base oil is measured by using a four-ball tester, and the wear properties of the oil at different additive amounts are determined by using a universal tribometer.

Findings

PTFE (at 5 Wt.%) and MoS2 (at 1 Wt.%) were found to improve the tribological performance of the base oil. The weld load is significantly increased when 5 Wt.% of PTFE + MoS2 is added to the base oil.

Originality/value

A better tribological characteristic can be achieved by combining additives that amount to less than 1% of the base oil. In experiments with highly concentrated MoS2, the adequate pressure improved dramatically, but the lubricant’s tribological characteristics did not.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0321/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2018

Leihua Xu, Yong Zhang, Dekun Zhang and Mei Leng

This paper aims to report the tribological behavior of Ag nanoparticles/reduced graphene oxide nanocomposites (Ag/RGO NCs) and Ag nanoparticles (Ag NPs) as a green additive in oil…

Abstract

Purpose

This paper aims to report the tribological behavior of Ag nanoparticles/reduced graphene oxide nanocomposites (Ag/RGO NCs) and Ag nanoparticles (Ag NPs) as a green additive in oil with different concentration and under different friction conditions.

Design/methodology/approach

The Ag/RGO NCs and Ag NPs were both synthesized in a chemical reduction method. The diameter of silver nanoparticles implanted between RGO sheets was about 25 nm and that of silver sol was 70 nm. The morphology and structure of Ag/RGO NC were characterized by TEM, XRD and FTIR. The tribological properties of Ag/RGO NCs and Ag NPs as lubricant oil additive were evaluated by measuring the friction coefficients and wear of the surface in different condition which were tested on UMT-II.

Findings

The results indicated that both the additives improved the friction-reduced and anti-wear properties of paraffin oil, and Ag/RGO NCs has better tribological performance than Ag NPs. The excellent tribological properties were attributed to the special structure of Ag/RGO NC and the formation of tribofilm reducing the friction and wear on the shearing surfaces.

Research limitations/implications

It is relatively difficult to observe the morphology of the lubricant film formed on the friction surface and to analyze the chemical composition at different depths of the lubricant film.

Originality/value

It is the first time for Ag/RGO NCs to be applied to improve the friction-reduced and anti-wear properties of lubricant oil as additive.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 January 2022

Mara Kandeva, Zhecho Kalitchin, Elena Zadorozhnaya and Aleksandar Vencl

The purpose of this study was to investigate the biobased (rapeseed) oil with the addition of different amounts of metal-containing additive in a steel–bronze tribological system…

Abstract

Purpose

The purpose of this study was to investigate the biobased (rapeseed) oil with the addition of different amounts of metal-containing additive in a steel–bronze tribological system. The additional purpose was to find the optimal value of the additive.

Design/methodology/approach

This paper exposes experimental results of the performance characteristics (coefficient of friction (COF), working temperature and wear) of the biolubricant based on rapeseed oil. The amount of commercial metal-containing additive in formulated lubricant was 1, 1.5, 3 and 5 wt.%. All results were compared with the results obtained for the base rapeseed oil. Two different tribometers were used, with the same tribosystem elements materials (bronze and steel). COF experiments were performed under four different normal loads and fixed sliding speed and time. Temperature and wear were continuously monitored.

Findings

Results showed that the metal-containing additive in rapeseed oil reduced all monitored characteristics. It was also found that the dependence of all characteristics on the amount of additive is nonlinear and that there is an optimal value of it.

Originality/value

Owing to growing environmental concerns, vegetable oil-based lubricants and other biodegradable lubricants are expanding their area of application. Currently, one of the most widely used vegetable oil is rapeseed oil. The metal-containing additive used in this study is previously investigated as an addition to mineral- and synthetic-based oils. There are very few studies that investigate its influence on the vegetable oil-based lubricants. In addition, there is no comparative investigation of its influence on several performance characteristics (COF, temperature and wear).

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 352