Search results

1 – 10 of 568
Article
Publication date: 26 August 2014

Xiuchen Wang, Zhe Liu, Zhong Zhou, Qing He and Haoxian Zeng

The purpose of this paper is to propose a new indicator-gray porosity that can objectively evaluate real porosities of electromagnetic shielding (EMS) fabric based on computer…

Abstract

Purpose

The purpose of this paper is to propose a new indicator-gray porosity that can objectively evaluate real porosities of electromagnetic shielding (EMS) fabric based on computer image analysis, which aims to address current porosity evaluation by tightness.

Design/methodology/approach

A method for the fabric image acquisition is determined and a gray digital model is established. The porosity membership region of true porosity is judged according to the total gray wave. A bi-directional judgment method based on horizontal and vertical single gray waves is proposed to automatically identify the gray porosity in the porosity membership region. After experiments, the differences between the gray porosity indicator and the tightness indicator are analyzed, the influence of the gray porosity on the shielding effectiveness (SE) is discussed, and the advantages of the gray porosity indicator are detailed.

Findings

Results show that the proposed indicator can accurately represent the real porosity size of the EMS fabric without pre-acquiring the structure parameters of the fabric, which provides a reference for the study of the electromagnetic characteristic of the EMS fabric.

Originality/value

The gray porosity presented in this paper is a new method to objectively evaluate real porosities of the EMS fabric, and can be applied to the research and evaluation of the electromagnetic characteristic for the EMS fabric.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 June 2007

Hsin‐Te Liao and Jie‐Ren Shie

The objective of this study is to investigate the effect of various parameters on rapid prototyping parts for processes of sintering metallic powder by using Nd:YAG laser via the…

2056

Abstract

Purpose

The objective of this study is to investigate the effect of various parameters on rapid prototyping parts for processes of sintering metallic powder by using Nd:YAG laser via the design of experiments (DOE) method.

Design/methodology/approach

Experiments based on the DOE method were utilized to determine an optimal parameter setting for achieving a minimum amount of porosities in specimens during the selective laser sintering (SLS) process. Analysis of variance (ANOVA) was further conducted to identify significant factors.

Findings

A regression model predicting percentages of porosities under various conditions was developed when the traditional Taguchi's approach failed to identify a feasible model due to strong interactions of controlled factors. The significant factors to the process were identified by ANOVA.

Research limitations/implications

Four controlled factors including pulse frequencies and pulse durations of laser beams, times of strikes of a pulse applying on a single laser spot and particle sizes of the powder base material had significant influence on the sintering process. Future investigation planned to be carried out for achieving multiple quality targets such as the hardness and the density for 3D parts.

Originality/value

The implementation of the DOE method provided a systematic approach to identify an optimal parameter setting of the SLS process; thus, the efficiency of designing optimal parameters was greatly improved. This approach could be easily extended to 3D cases by just including additional parameters into the design. Additionally, utilization of the normality analysis on the residual data ensured that the selected model was adequate and extracted all applicable information from the experimental data.

Details

Rapid Prototyping Journal, vol. 13 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 January 2023

Supriya Yadav, Kulwant Singh, Anmol Gupta, Mahesh Kumar, Niti Nipun Sharma and Jamil Akhtar

The purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the…

Abstract

Purpose

The purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the fabrication of microfluidics device application.

Design/methodology/approach

The experiment has been done on the WhatmanTM grade 1, WhatmanTM chromatography and nitrocellulose paper samples which are made by GE Healthcare Life Sciences. The structural characterization of paper samples for surface properties has been done by scanning electron microscope and ImageJ software. Identification of functional groups on the surface of samples has been done by Fourier transform infrared analysis. A finite elemental analysis has also been performed by using the “Multiphase Flow in Porous Media” module of the COMSOL Multiphysics tool which combines Darcy’s law and Phase Transport in Porous Media interface.

Findings

Experimentally, it has been concluded that the paper substrate for flexible microfluidic device application must have large number of internal (intra- and interfiber) pores with fewer void spaces (external pores) that have high capillary pressure to propel the fluid in onward direction with narrow paper fiber channel.

Originality/value

Surface structure has a dynamic impact in paper substrate utilization in multiple applications such as paper manufacturing, printing process and microfluidics applications.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2020

Lukas Englert, Stefan Dietrich and Pascal Pinter

The purpose of this paper is to understand the relationship between defect properties and the tool path used for generating additively manufactured parts. The correlation between…

Abstract

Purpose

The purpose of this paper is to understand the relationship between defect properties and the tool path used for generating additively manufactured parts. The correlation between processing strategy and porosity architecture is one of the key aspects for a precise understanding of defect formation and possibilities for defect reduction.

Design/methodology/approach

The authors present a new combined geometry, processing path and porosity analysis procedure based on the use of x-ray computed micro tomography image data and numerical control programming code. The procedure allows for a covisualisation of the track of the respective processing head with the three-dimensional microstructure data.

Findings

The presented method yields statistical results about defect distribution and morphologies introduced by the respective process characteristics in parts. The functionality of the proposed procedure is demonstrated on an aluminum (AlSi10Mg) and a polylactide test sample to show the additional insight found for both additive manufacturing processes and the resulting microstructural properties.

Originality/value

The novelty of this paper is the analysis of the porosity with respect to the underlying additive process zone and the sample geometry.

Open Access
Book part
Publication date: 4 May 2018

Syamsul Amien

Purpose – To predict the existence of the aquifer, search the location, position, thickness, deep and dissemination of subsurface aquifer and predict the environmental condition…

Abstract

Purpose – To predict the existence of the aquifer, search the location, position, thickness, deep and dissemination of subsurface aquifer and predict the environmental condition by conducting the groundwater/aquifer condition.

Design/Methodology/Approach – The way to know the state of groundwater aquifers, one of which is the Geo-electric Method by using the Resistivity Schlumberger Method.

Findings – Pouple activities are not many effects to the groundwater but more time depend on the development, it can many influences to environmental conditions.

Research Limitations/Implications – The analysis is conducted to every point but on this research, it is on mentioned and taken from one sample only, it is HPR.

Practical Implications – In anticipation the effect of the development of the region in general, it is necessary to be able businesses for raw water, irrigation and Industry of the groundwater can be as well as how to control over the distribution and causes of infiltration into the soil.

Originality/Value – That is by measuring the resistivity and mapping dealer spread a layer of groundwater (aquifers) that an overview of the groundwater can be known.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Article
Publication date: 3 December 2021

Jagbir Singh, Mukul Kataria, Vishesh Kumar, Chandrashekhar Jawalkar and Rajendra Madhukar Belokar

The purpose of the study is to fabricate a joint between two aluminium metal matrix composites using microwave hybrid heating (MHH).

Abstract

Purpose

The purpose of the study is to fabricate a joint between two aluminium metal matrix composites using microwave hybrid heating (MHH).

Design/methodology/approach

Taguchi design of experiments was applied to conduct the experimental study. The mechanical properties such as ultimate tensile strength, micro-hardness and porosity were studied. Grey Relational Analysis was applied to understand the significance of fabrication parameters of best performing sample. The dominant factor of fabrication was analysed using ANOVA. The best performance sample was further characterised using X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray was used to analyse the elemental composition of the sample.

Findings

The Aluminium Metal Matrix Composite (AMMC) joint was successfully fabricated using MHH. The mechanical properties were mainly influenced by the fabrication factor of exposure time.

Originality/value

The formation of AMMC joint using MHH might explore the way for the industries in the field of joining.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 November 2016

Jiang Hu

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the…

Abstract

Purpose

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the long-term behavior of concrete in service and bridges the gap between research on the material and on the structural level. However, the combined chemical-physical deterioration mechanisms of concrete remain a challenging task. The purpose of this paper is to investigate the degradation mechanism of concrete at the waterline in cold regions induced by combined calcium leaching and frost damage.

Design/methodology/approach

With the help of the NIST’s three-dimensional (3D) hydration model and the random aggregate model, realistic 3D representative volume elements (RVEs) of concrete at the micro-, the meso-, and the macro-scales can be reconstructed. The boundary problem method is introduced to compute the homogenized mechanical properties for both sound and damaged RVEs. According to the damage characteristics, the staggering method including a random dissolution model and a thermo-mechanical coupling model is developed to simulate the synergy deterioration effects of interacted calcium leaching and frost attacks. The coupled damage procedure for the frost damage process is based on the hydraulic pressure theory and the ice lens growth theory considering the relationship between the frozen temperature and the radius of the capillary pore. Finally, regarding calcium leaching as the leading role in actual engineering, the numerical methodology for combined leaching and frost damage on concrete property is proposed using a successive multi-scale method.

Findings

On the basis of available experimental data, this methodology is employed to explore the deterioration process. The results agree with the experimental ones to some extent, chemical leaching leads to the nucleation of some micro-cracks (i.e. damage), and consequently, to the decrease of the frost resistance.

Originality/value

It is demonstrated that the multi-scale numerical methodology can capture potential aging and deterioration evolution processes, and can give an insight into the macroscopic property degradation of concrete under long-term aggressive conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 March 2017

Xiuchen Wang, Yaping Li, Ying Su, Zhen Pan and Zhe Liu

The three-dimensional arrangement structure of the conductive fiber is an important factor of the shielding effectiveness of the electromagnetic shielding fabric (EMSF). However…

Abstract

Purpose

The three-dimensional arrangement structure of the conductive fiber is an important factor of the shielding effectiveness of the electromagnetic shielding fabric (EMSF). However, until now, the three-dimensional arrangement structure has not been described because of the complex structure, which leads to many difficulties for the subsequent analysis of the electromagnetic characteristics. Therefore, the purpose of this paper is to propose a feature extraction method to describe the arrangement structure of the conductive fiber based on the three-dimensional calibration and image processing technology, providing a new idea for the above problem.

Design/methodology/approach

First, the three-dimensional positions of the conductive fibers in the EMSF are calibrated using the VHX-600 3D digital microscope and the MATLAB7.5 software. The arrangement characteristics of the conductive fibers are analyzed, and equivalent twist, cross-sectional content, and average angle of a single fiber are proposed to describe the arrangement characteristic of the conductive fiber. Then, a digital description model of the conductive fiber is constructed according to the feature parameters and its three-dimensional structures are reproduced using CATIA. Finally, the reliability of the model is verified by an FDTD example, and the significance and application of the model are given.

Findings

The proposed method can provide the feature extraction and description for the complex spatial three-dimensional arrangement structure of conductive fibers. The feature parameters can reflect different micro arrangement features of the conductive fiber. The proposed idea and method can provide a solid foundation for subsequent studies of the electromagnetic properties of the EMSF.

Originality/value

The study in this paper is of great significance and academic value. This paper provides a new three-dimensional calibration method and constructs multiple feature parameters to describe the complex three-dimensional arrangement structure, providing a new effective method to overcome the problem of the conductive fiber description. The proposed method provides an important basis for the shielding mechanism, transmission characteristics, electromagnetic calculation and product design, and woven technology of the EMSF.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 May 1999

Jiri Militky, Marie Travnickova and Vladimir Bajzik

The main aim of this contribution is characterization of fabric porosity by the light transmission and comparison of this characteristic with air permeability and idealized…

Abstract

The main aim of this contribution is characterization of fabric porosity by the light transmission and comparison of this characteristic with air permeability and idealized geometrical structure of selected weaves. For characterization of air permeability the classical apparatus has been used. The transmission of light through fabrics has been measured on the system LUCIA for image analysis. The porosity of textiles has been evaluated from corresponding construction parameters and idealized models of fabric geometry. The dependencies between the above mentioned characteristics were formalized by using regression analysis.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 July 2020

Govindarajan Narayanan

The purpose of this study is to address the complexity involved in computing the fatigue life of casted structure with porosity effects in aero engine applications. The…

Abstract

Purpose

The purpose of this study is to address the complexity involved in computing the fatigue life of casted structure with porosity effects in aero engine applications. The uncertainty of porosity defects is addressed by introducing probabilistic models.

Design/methodology/approach

One major issue of casted aluminium alloys in the application of aerospace industries is their internal defects such as porosities, which are directly affecting the fatigue life. Since there is huge cost and time effort involved in understanding the effect of fatigue life in terms of the presence of the internal defects, a probabilistic fatigue model approach is applied in order to define the realistic fatigue limit of the casted structures for the known porosity fractions. This paper describes the probabilistic technique to casted structures with measured porosity fractions and its relation to their fatigue life. The predicted fatigue life for various porosity fractions and dendrite arm spacing values is very well matching with the experimentally predicted fatigue data of the casted AS7G06 aluminium alloys with measured internal defects. The probabilistic analysis approach not only predicts the fatigue life limit of the structure but also provides the limit of fatigue life for the known porosity values of any casted aluminium bearing support structure used in aero engines.

Findings

The probabilistic fatigue model for addressing porosity in casting structure is verified with experimental results.

Research limitations/implications

This is grey area in aerospace and automotive industry.

Originality/value

This work is original and not published anywhere else.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 568