Search results

1 – 10 of 30
Article
Publication date: 13 February 2023

Mehmet Altuğ

The purpose of this study was conducted at an enterprise that produces fasteners and is one of the leading companies in the sector in terms of market share. Possible defects in…

Abstract

Purpose

The purpose of this study was conducted at an enterprise that produces fasteners and is one of the leading companies in the sector in terms of market share. Possible defects in the coating of bolts and nuts either lead to products being scrapped or all of the coating process being repeated from beginning to end. In both cases, the enterprise faces a waste of time and excessive costs. Through this project, the six sigma theory and its means were effectively used to improve the efficiency and quality management of the company. The selection of the six sigma project has also contributed to the creation of various documents to be used for project screening and evaluation of financial results.

Design/methodology/approach

Six sigma is an optimization strategy that is used to improve the profitability of businesses, avoid waste, scrap and losses, reduce costs and improve the effectiveness of all activities to meet or exceed customers’ needs and expectations. Six sigma’s process improvement model, known as Definition-Measurement-Analysis-Improvement-Control, contributes to the economic and technical achievements of businesses. The normal distribution of a process should be within ±3 sigma of the mean. This represents a scale of 99.7% certainty. However, improving the process through the utilization of the six sigma rule, which accepts normal variabilities of processes twice as strict, will result in an error rate of 3.4 per million instead of 2,700 per million for each product or service.

Findings

Using six sigma practices to reduce the costs associated with low quality and to increase economic added value became a cultural practice. With this, the continuation of six sigma practices throughout the Company was intended. The annual cost reduction achieved with the utilization of six sigma practices can be up to $21,780. When time savings are also considered, a loss reduction of about $30,000 each year can be achieved. The coating thickness efficiency increased from 85% to 95% after the improvements made through the six sigma project. There is a significant increase in the efficiency of coating thickness. In addition, the coating thickness efficiency is also close to the target value of 95%–97%.

Originality/value

The results of the study were optimized with the help of deep learning. The performance of the model created in deep learning was quite close to the actual performance. This result implicates the validity of the improvement work. The results may act as a guide for the use of deep learning in new projects.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 December 2022

Fatemeh Mozaffari, Marzieh Rahimi, Hamidreza Yazdani and Babak Sohrabi

This research intends to develop a model for predicting employees at a high-risk attrition and identify the most important factors affecting them.

Abstract

Purpose

This research intends to develop a model for predicting employees at a high-risk attrition and identify the most important factors affecting them.

Design/methodology/approach

In this study, using the triangulation technique of a mixed research method, the employee attrition problem is investigated by identifying its affecting factors. For that matter, data related to the human resources department of a pharmaceutical company in Iran are used. And to achieve the intended goal, advanced data mining algorithms and interviews with human resource managers are applied.

Findings

A model for predicting employees at a high-risk attrition is presented based on the gradient boosting machine algorithm with 89% accuracy. The use of the mixed research approach shows that qualitative and quantitative methods can be more effective in identifying the factors affecting employee churn or loss of staff. The results also contain a new situation arising out of the COVID-19 pandemic and remote working scenarios having impact on employee attrition. Finally, human resource policies are presented based on variables related to each of the identified factors.

Originality/value

The novel contributions of this study include real data related to a leading pharmaceutical company as well as a combination of two quantitative and qualitative methods. The hybrid approach can identify the reasons for attrition and, consequently, retention policies to benefit from the advantage of both approaches. Data mining can be useful to identify the factors, which are usually not mentioned in termination interviews, such as direct managers. On the other hand, the results obtained from termination interviews can also include features that the authors cannot identify through data mining, which are specifically related to the characteristics of the pharmaceutical industry such as building a more professional career path. From a practical perspective, since this company specializes in pharmaceutical marketing in a new way and is primarily comprised graduates, it is important to note that the churn of specialized people disperses organizational and technological know-how. On the other hand, the pharmacist community in Iran is small, and their attrition might adversely affect not only the reputation of an organization but the employer's brand as well. So, this research would help other similar firms in retaining their valuable human capital.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 September 2023

Juliano Idogawa, Flávio Santino Bizarrias and Ricardo Câmara

The purpose of this study is to determine the influence of project critical success factors (CSFs) on change management in the context of business process management (BPM)…

1560

Abstract

Purpose

The purpose of this study is to determine the influence of project critical success factors (CSFs) on change management in the context of business process management (BPM). Despite widespread interest in BPM, the existing literature is insufficient in addressing the antecedents that contribute to change management in business process projects.

Design/methodology/approach

Key factors of change management success in BPM projects were initially identified in a systematic literature review (SLR) and were used as antecedents of change management through a structural equation modeling (SEM) with 464 business project stakeholders. Next, a neural network analysis allowed the key factors to be ranked non-linearly. Finally, a latent class analysis (LCA) was performed to determine the sample's heterogeneous groups based on their project management characteristics.

Findings

Project management, top management support and technological competencies were the main CSFs identified as having positive effects on change management. The most important factor is project management, followed by top management support, which plays a crucial mediating role in enabling change management. Although relevant, technological competencies were secondary in the study. Regarding project management CSF, four heterogeneous classes of individuals were determined.

Research limitations/implications

Although this study provides an opportunity to observe CSFs, it does not address the need to analyze the phenomenon in different classifications of projects, regarding maturity, complexity, project management approach and other aspects that differentiate projects in a meaningful way.

Practical implications

The study allows practitioners to understand the critical factors underlying change management and take necessary actions to manage it, recognizing that individuals have heterogeneous profiles regarding project management.

Originality/value

This study pioneeringly discusses the CSFs of change management BPM projects to enable successful change management, ranking the main factors and mapping heterogeneous profiles.

Details

Business Process Management Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 12 April 2024

Ahmad Honarjoo and Ehsan Darvishan

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of…

Abstract

Purpose

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of repairing and rehabilitating massive bridges and buildings is very high, highlighting the need to monitor the structures continuously. One way to track the structure's health is to check the cracks in the concrete. Meanwhile, the current methods of concrete crack detection have complex and heavy calculations.

Design/methodology/approach

This paper presents a new lightweight architecture based on deep learning for crack classification in concrete structures. The proposed architecture was identified and classified in less time and with higher accuracy than other traditional and valid architectures in crack detection. This paper used a standard dataset to detect two-class and multi-class cracks.

Findings

Results show that two images were recognized with 99.53% accuracy based on the proposed method, and multi-class images were classified with 91% accuracy. The low execution time of the proposed architecture compared to other valid architectures in deep learning on the same hardware platform. The use of Adam's optimizer in this research had better performance than other optimizers.

Originality/value

This paper presents a framework based on a lightweight convolutional neural network for nondestructive monitoring of structural health to optimize the calculation costs and reduce execution time in processing.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 November 2023

Ahmed M. E. Bayoumi

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Abstract

Purpose

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Design/methodology/approach

This article proposes a RGI algorithm to solve CSCTME with two unknowns.

Findings

The introduced (RGI) algorithm is more efficient than the gradient iterative (GI) algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Research limitations/implications

The introduced (RGI) algorithm is more efficient than the GI algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Practical implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Social implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Originality/value

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester conjugate transpose matrix equations (CSCTME) with two unknowns. For any initial matrices, a sufficient condition is derived to determine whether the proposed algorithm converges to the exact solution. To demonstrate the effectiveness of the suggested method and to compare it with the gradient-based iterative algorithm proposed in [6] numerical examples are provided.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2024

Fangqi Hong, Pengfei Wei and Michael Beer

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and…

Abstract

Purpose

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and alternative acquisition functions, such as the Posterior Variance Contribution (PVC) function, have been developed for adaptive experiment design of the integration points. However, those sequential design strategies also prevent BC from being implemented in a parallel scheme. Therefore, this paper aims at developing a parallelized adaptive BC method to further improve the computational efficiency.

Design/methodology/approach

By theoretically examining the multimodal behavior of the PVC function, it is concluded that the multiple local maxima all have important contribution to the integration accuracy as can be selected as design points, providing a practical way for parallelization of the adaptive BC. Inspired by the above finding, four multimodal optimization algorithms, including one newly developed in this work, are then introduced for finding multiple local maxima of the PVC function in one run, and further for parallel implementation of the adaptive BC.

Findings

The superiority of the parallel schemes and the performance of the four multimodal optimization algorithms are then demonstrated and compared with the k-means clustering method by using two numerical benchmarks and two engineering examples.

Originality/value

Multimodal behavior of acquisition function for BC is comprehensively investigated. All the local maxima of the acquisition function contribute to adaptive BC accuracy. Parallelization of adaptive BC is realized with four multimodal optimization methods.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 30