Search results

1 – 10 of over 32000
Article
Publication date: 18 August 2022

Cole Brauer and Daniel Aukes

Multimaterial components possess material boundaries that introduce potential points of failure. Graded material transitions can help mitigate the impact of these abrupt property…

Abstract

Purpose

Multimaterial components possess material boundaries that introduce potential points of failure. Graded material transitions can help mitigate the impact of these abrupt property changes. This approach is becoming increasingly accessible through three-dimensional (3D) printing, but it has yet to be extensively studied for rapid prototyping processes that are limited in resolution or number of material types. This study aims to investigate methods for applying graded transitions when using manufacturing processes with these limitations.

Design/methodology/approach

This study introduces a series of transition types that have graded properties and are produced using a finite number of discrete materials. This study presents a workflow for generating, fabricating and testing these transition types. This study uses this workflow with two different manufacturing processes to characterize the impact of each transition type on the ultimate tensile strength of a component.

Findings

Graded transitions can improve the performance of a component if the proper transition type is used. For high-fidelity processes, the best performing transitions are those closest to a true gradient. For low-fidelity processes, the best performing transitions are those which provide a balance of graded properties and mechanical connection.

Research limitations/implications

The presented performance trends are specific to the studied processes and materials. Future work using different fabrication parameters can use the presented workflow to assess process-specific trends.

Originality/value

This work comprehensively compares different methods of creating graded transitions using discrete materials, including several novel approaches. It also provides a new design workflow that allows the design of graded transitions to be easily integrated into a 3D printing workflow.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 August 2021

Mingkang Zhang, Yongqiang Yang, Meizhen Xu, Jie Chen and Di Wang

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Abstract

Purpose

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Design/methodology/approach

The Diamond structure was designed by the triply periodic minimal surface function in MATLAB, and multi-materials porous structures were manufactured by SLM. Compression tests were applied to analyze the anisotropy of mechanical properties of multi-materials porous structures.

Findings

Compression results show that the multi-materials porous structure has a strong anisotropy behavior. When the compression force direction is parallel to the material arrangement, multi-materials porous structure was compressed in a layer-by-layer way, which is the traditional deformation of the gradient structure. However, when the compression force direction is perpendicular to the material arrangement, the compression curves show a near-periodic saw-tooth waveform characteristic, and this kind of structure was compressed consistently. It is demonstrated that the combination with high strength brittle material and low strength plastic material improves compression mode, and plastic material plays a role in buffering fracture.

Originality/value

This research provides a new method for the design and manufacturing of multi-materials porous structures and an approach to change the compression behavior of the porous structure.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2014

Mehdi Soodi, Syed H. Masood and Milan Brandt

This paper aims to investigate the changes in tensile properties of novel functionally graded materials (FGMs) and wafer structures created by direct metal deposition (DMD…

Abstract

Purpose

This paper aims to investigate the changes in tensile properties of novel functionally graded materials (FGMs) and wafer structures created by direct metal deposition (DMD) additive manufacturing (AM) technology.

Design/methodology/approach

Laser-assisted DMD was used to create two innovative sets of metallic structures – the functionally graded and wafer-layered structures – using pairs of six different engineering alloys in different combinations. These alloys were selected due to their high popularity within a diverse range of industries and engineering applications. The laser-assisted DMD was selected as a suitable technique to create these complex structures because of its capability to deposit more than one alloy powder at a time. After creation of these structures, their tensile strength was tested in a series of tensile tests and the results were compared with those of single alloy samples.

Findings

It was observed that the mechanical properties of FGMs and wafer structure samples were clearly different from those of the single alloy samples, a fact which creates a whole pool of opportunities for development of new materials or structures with desired mechanical properties that cannot be achieved in single alloy parts.

Originality/value

The study demonstrates the application of the DMD process to produce unique structures and materials, which would be high in demand in engineering applications, where metallic parts are exposed to high loads and where excessive tensile stresses may adversely affect the performance of such parts.

Details

Rapid Prototyping Journal, vol. 20 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 May 2019

Nurul Aida Farhana Othman, Sharidya Rahman, Sharifah Fatmadiana Wan Muhamad Hatta, Norhayati Soin, Brahim Benbakhti and Steven Duffy

To design and optimize the traditional aluminum gallium nitride/gallium nitride high electron mobility transistor (HEMT) device in achieving improved performance and current…

Abstract

Purpose

To design and optimize the traditional aluminum gallium nitride/gallium nitride high electron mobility transistor (HEMT) device in achieving improved performance and current handling capability using the Synopsys’ Sentaurus TCAD tool.

Design/methodology/approach

Varying material and physical considerations, specifically investigating the effects of graded barriers, spacer interlayer, material selection for the channel, as well as study of the effects in the physical dimensions of the HEMT, have been extensively carried out.

Findings

Critical figure-of-merits, specifically the DC characteristics, 2DEG concentrations and mobility of the heterostructure device, have been evaluated. Significant observations include enhancement of maximum current density by 63 per cent, whereas the electron concentration was found to propagate by 1,020 cm−3 in the channel.

Practical implications

This work aims to provide tactical optimization to traditional heterostructure field effect transistors, rendering its application as power amplifiers, Monolithic Microwave Integrated Circuit (MMICs) and Radar, which requires low noise performance and very high radio frequency design operations.

Originality/value

Analysis in covering the breadth and complexity of heterostructure devices has been carefully executed through extensive TCAD modeling, and the end structure obtained has been optimized to provide best performance.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 16 October 2019

Ibrahim Amin

The study seeks to analyze concepts of “career grades” and “job grading,” to highlight their importance and objectives for the efficiency of administrative systems. In addition…

3140

Abstract

Purpose

The study seeks to analyze concepts of “career grades” and “job grading,” to highlight their importance and objectives for the efficiency of administrative systems. In addition, it identifies the international standards that can be used to draw grading systems. It explores the most important types of grade structures. It also clarifies grading systems in the Egyptian administrative system. It indicates some methods that can be considered a form of career progression.

Design/methodology/approach

The study employs descriptive, analytical, as well as, legal approaches; it analyzes the information given in the study in terms of relevant legal texts.

Findings

The study identifies precise definitions of both career grades and job grading, referring to these concepts in the Egyptian administrative system. It also suggests that there is no ideal hierarchy to be applied in all administrative systems. Therefore, the study provides some criteria that help to form the appropriate grade structure for each system.

Originality/value

The study analyses some literature on “job grading,” its objectives, its criteria and its main types, presenting an integrated framework that can be used to develop career-structure systems. Finally, the study identifies some methods that can be considered as a means of grading.

Details

Review of Economics and Political Science, vol. 8 no. 6
Type: Research Article
ISSN: 2356-9980

Keywords

Article
Publication date: 8 June 2021

Linlin Zhang and Haitian Yang

This paper attempts to develop an efficient algorithm to solve the inverse problem of identifying constitutive parameters in VFG (viscoelastic functionally graded) materials…

Abstract

Purpose

This paper attempts to develop an efficient algorithm to solve the inverse problem of identifying constitutive parameters in VFG (viscoelastic functionally graded) materials/structures.

Design/methodology/approach

An adaptive recursive algorithm with high fidelity is developed to acquire the derivatives of displacements with respect to constitutive parameters, which are required for the accurate and stable gradient based inverse analysis. A two-step strategy is presented in the process of identification, by which the unknown parameters can be separately identified and the scale and complexity of the inverse VFG problem are reduced. At each step, the process of identification is treated as an optimization problem that is solved by the Levenberg–Marquardt method.

Findings

The solution accuracy of forward problems and derivatives of displacements can be stably achieved with different step sizes, and constitutive parameters of homogenous/regional-inhomogeneous VFG materials/structures can be effectively and accurately identified. By examining the reliability, resolution, impacts of reference information and noisy data, the effectiveness of the proposed approach is numerically verified via three numerical examples.

Originality/value

An adaptive recursive algorithm is developed for derivatives computing with high fidelity, providing a solid platform for the sensitivity analysis and thereby a two-step strategy in conjunction with Levenberg–Marquardt method is presented in the process of identification. Consequently, an effective algorithm is developed to identify constitutive parameters of homogenous/regional-inhomogeneous VFG materials/structures.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Adil Baykasoglu and Cengiz Baykasoglu

The purpose of this paper is to develop a new multi-objective optimization procedure for crashworthiness optimization of thin-walled structures especially circular tubes with…

Abstract

Purpose

The purpose of this paper is to develop a new multi-objective optimization procedure for crashworthiness optimization of thin-walled structures especially circular tubes with functionally graded thickness.

Design/methodology/approach

The proposed optimization approach is based on finite element analyses for construction of sample design space and verification; gene-expression programming (GEP) for generating algebraic equations (meta-models) to compute objective functions values (peak crash force and specific energy absorption) for design parameters; multi-objective genetic algorithms for generating design parameters alternatives and determining optimal combination of them. The authors have also utilized linear and non-linear least square regression meta-models as a benchmark for GEP.

Findings

It is shown that the proposed approach is able to generate Pareto optimal designs which are in a very good agreement with the actual results.

Originality/value

The paper presents the application of a genetic programming-based method, namely, GEP first time in the literature. The proposed approach can be used to all kinds of related crashworthiness problems.

Article
Publication date: 16 January 2017

Zhengyan Zhang and Sanjay Joshi

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of…

1325

Abstract

Purpose

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of complex heterogeneous material allowing for the additive manufacturing-based build of a wide range of objects that are limited only by the constraints of the manufacturing process.

Design/methodology/approach

Initial 3D CAD models are created with multiple and functionally graded materials using an assembly model to create a single part with well-defined material regions. These models are then sliced to create the geometry and material boundaries required for each layer to enable layer-by-layer fabrication.

Findings

A representation schema is proposed to add multi-material attributes to a sliced file for additive manufacturing using the combination of material index and material geometry region. A modified common layer interface data format is proposed to allow for representation of a wide range of homogeneous and heterogeneous material for each slice. This format allows for a generic input for tool paths to be generated for each material of the layer.

Originality/value

The proposed approach allows for slice data representation for any material combination that can be defined mathematically. Three different material types, namely, composite material, functionally graded materials and combination thereof, are provided as examples. These data form the input data for subsequent tool path planning.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 32000