Search results

1 – 10 of 10
Article
Publication date: 4 July 2016

Dorota Stachowiak

– The purpose of this paper is to find the method for determining the displacement of the active element in a giant magnetostrictive transducer.

189

Abstract

Purpose

The purpose of this paper is to find the method for determining the displacement of the active element in a giant magnetostrictive transducer.

Design/methodology/approach

The giant magnetostrictive transducer with the active element made of Terfenol-D has been considered. A structure with an axisymmetrical transducer has been proposed. In the proposed model the coupling of magnetic and mechanical field has been taken into account. Maxwell’s equations for electromagnetics and Navier’s equations for mechanical systems are formulated in weak form and coupled using a nonlinear magneto-mechanical constitutive law for Terfenol-D. In order to obtain the distribution of the magnetic and mechanical fields the finite element method was used. The elaborated nonlinear magnetostrictive model has been implemented by using a finite element weak formulation with COMSOL Multiphysics.

Findings

The elaborated model for the giant magnetostrictive transducer allows to take into account the magneto-mechanical coupling as well as the material’s nonlinearity. The calculation results of the strain distributions caused by magnetostrictive forces have been presented. The output displacement of a transducer vs supply current for different compressive preload stresses has been calculated and measured. The simulation and measurements results are in close agreement.

Research limitations/implications

Taking advantage of the geometrical structure of the prototype of the giant magnetostrictive transducer the computations are performed in an axial-symmetric domain with cylindrical coordinates (r, z, ϑ). The axisymmetric formulation describes the giant magnetostrictive transducers (GMT) without significant loss of accuracy. This approach leads to smaller numerical models and reduced computational time.

Practical implications

The elaborated magneto-mechanical model can be used to the design and optimize the structure of GMT.

Originality/value

The paper offers the magneto-mechanical model of the giant magnetostrictive transducer. The elaborated model can predict behavior of the magnetostrictive materials it can be used as a tool for the design process of the giant magnetostrictive transducer.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2021

Ce Rong, Zhongbo He, Guangming Xue, Guoping Liu, Bowen Dai and Zhaoqi Zhou

Owing to the excellent performance, giant magnetostrictive materials (GMMs) are widely used in many engineering fields. The dynamic Jiles–Atherton (J-A) model, derived from…

Abstract

Purpose

Owing to the excellent performance, giant magnetostrictive materials (GMMs) are widely used in many engineering fields. The dynamic Jiles–Atherton (J-A) model, derived from physical mechanism, is often used to describe the hysteresis characteristics of GMM. However, this model, despite cited by many different literature studies, seems not to possess unique expressions, which may cause great trouble to the subsequent application. This paper aims to provide the rational expressions of the dynamic J-A model and propose a numerical computation scheme to obtain the model results with high accuracy and fast speed.

Design/methodology/approach

This paper analyzes different published papers and provides a reasonable form of the dynamic J-A model based on functional properties and physical explanations. Then, a numerical computation scheme, combining the Newton method and the explicit Adams method, is designed to solve the modified model. In addition, the error source and transmission path of the numerical solution are investigated, and the influence of model parameters on the calculation error is explored. Finally, some attempts are made to study the influence of numerical scheme parameters on the accuracy and time of the computation process. Subsequently, an optimization procedure is proposed.

Findings

A rational form of the dynamic J-A model is concluded in this paper. Using the proposed numerical calculation scheme, the maximum calculation error, while computing the modified model, can remain below 2 A/m under different model parameter combinations, and the computation time is always less than 0.5 s. After optimization, the calculation speed can be enhanced with the computation accuracy guaranteed.

Originality/value

To the best of the authors’ knowledge, this paper is the first one trying to provide a rational form of the dynamic J-A model among different citations. No other research studies focus on designing a detailed computation scheme targeting the fast and accurate calculation of this model as well. And the performance of the proposed calculation method is validated in different conditions.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 August 2015

Piotr Guzdek and Marek Wzorek

The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn…

Abstract

Purpose

The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn0.62Cu0.08Fe2O4, CoFe2O4 ferrites as a magnetostrictive phase, Pb(Fe1/2Ta1/2)O3 (PFT), Pb(Fe1/2Nb1/2)O3 relaxors as a ferroelectric phase and polyvinylidene fluoride (PVDF) as piezoelectric phase.

Design/methodology/approach

The ceramic components of composites were prepared by the standard solid-state reaction method. The intermetallic compound TbFe2 was prepared with an arc melting system with a contact-less ignition in a high purity argon atmosphere. The metal – ceramic – polymer composites were prepared in a container in which powder of PVDF were dissolved in N,N-dimethylformamide with continuous mixing and at the controlled temperature. Ceramic composites were prepared as bulk samples and multilayer tape cast and co-sintered laminates. The microstructure of the composites was investigated using scanning electron microscopy (SEM). The magnetoelectric effect of the composites was evaluated at room temperature by means of the dynamic lock-in method.

Findings

SEM analysis revealed a dense, fine-grained microstructure and uniform distribution of the metallic, ferrite and relaxor grains in the bulk composites. The SEM image for multilayer composite illustrates the lack of cracks or delaminations at the phase boundaries between the well-sintered ferrite and relaxor layers. For all studied composites, the magnetoelectric coefficients at a lower magnetic field increase, reaches a maximum and then decreases.

Originality/value

The progress in electronic technology is directly linked to advances made in materials science. Exploring and characterizing new materials with interesting magnetoelectric properties, in the rapidly growing field of functional materials, is an important task. The paper reports on processing, microstructure and magnetoelectric properties of novel magnetoelectric composites.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 23 November 2012

Wei Zhang and Jianqin Mao

This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate‐dependent nonlinear property.

Abstract

Purpose

This paper proposes a robust modeling method of a giant magnetostrictive actuator which has a rate‐dependent nonlinear property.

Design/methodology/approach

It is known in statistics that the Least Wilcoxon learning method developed using Wilcoxon norm is robust against outliers. Thus, it is used in the paper to determine the consequence parameters of the fuzzy rules to reduce the sensitiveness to the outliers in the input‐output data. The proposed method partitions the input space adaptively according to the distribution of samples and the partition is irrelative to the dimension of the input data set.

Findings

The proposed modeling method can effectively construct a unique dynamic model that describes the rate‐dependent hysteresis in a given frequency range with respect to different single‐frequency and multi‐frequency input signals no matter whether there exist outliers in the training set or not. Simulation results demonstrate that the proposed method is effective and insensitive against the outliers.

Originality/value

The main contributions of this paper are: first, an intelligent modeling method is proposed to deal with the rate‐dependent hysteresis presented in the giant magnetostrictive actuator and the modeling precision can fulfill the requirement of engineering, such as the online modeling issue in the active vibration control; and second, the proposed method can handle the outliers in the input‐output data effectively.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 15 June 2015

Cristian Fosalau, Cristian Zet and Daniel Petrisor

The paper aims to present a device devoted to detect and measure earth displacements produced by landslides. This device is an inclinometer type geotechnical instrument. It is…

Abstract

Purpose

The paper aims to present a device devoted to detect and measure earth displacements produced by landslides. This device is an inclinometer type geotechnical instrument. It is widely known that landslides are categorized among the most destructive disasters that yearly produce huge damages and even human lives losses.

Design/methodology/approach

The principle of operation is based on measuring the deformation produced during soil layers sliding to a rod vertically mounted into the ground. The rod deformation is detected by highly sensitive strain gauges developed by authors using the stress impedance effect occurring in non-magnetostrictive magnetic amorphous microwires. The gauges are mounted in bridge configurations along the rod, beside the corresponding analogue and digital signal processing circuitry.

Findings

The landslide transducer is able to calculate the displacement of the soil layers at different levels of depth and the direction of the landslide. It has been tested in laboratory in terms of sensitivity and accuracy. A resolution of less than 1 mm has been achieved for displacement detection, whereas orientation may be calculated with about a maximum accuracy of less than 20 degrees.

Research limitations/implications

Problems occurred in the manufacturing process of the gauges because of the quite large dispersion of the microwire parameters, as well as with gluing the gauges on the rod, that is compulsory to be well done, otherwise the gauges relaxation occurs with consequence in time stability decay.

Originality/value

With respect to other commercial devices, our inclinometer is characterized by high sensitivity and also by possibility of 3D measuring, it being able to gauge in depth the amplitude and orientation of the landslide.

Details

Sensor Review, vol. 35 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 April 2012

H.Y. Lau, K.P. Liu, P.L. Wong and Wen Wang

The purpose of this paper is to carry out a proof‐of‐concept experiment on positioning control of a smart journal bearing using giant magnetostrictive material (GMM)‐based…

Abstract

Purpose

The purpose of this paper is to carry out a proof‐of‐concept experiment on positioning control of a smart journal bearing using giant magnetostrictive material (GMM)‐based actuators.

Design/methodology/approach

In the system, a journal bearing integrated with GMM actuators is actively controlled using self‐tuning P control under PID algorithm.

Findings

With the aid of GMM actuators, the positioning performance of journal bearing system is enhanced. The results demonstrate that the smart bearing system is practical and that GMM is an excellent material for driving function.

Research limitations/implications

The smart bearing system can be applied to other types of machinery if new calibrations are done on both bearing and actuators.

Practical implications

The results prove the possibility of applying the smart bearing system to demanding industrial usages (high load capacity, control ability and stability at high speeds).

Originality/value

The idea of using GMM for the smart journal bearing is original and has not been mentioned in past literature.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2009

M. Kaltenbacher, M. Meiler and M. Ertl

Magnetostrictive alloys are widely used in actuator and sensor applications. The purpose of this paper is to developed a realistic physical model and a numerical computational…

Abstract

Purpose

Magnetostrictive alloys are widely used in actuator and sensor applications. The purpose of this paper is to developed a realistic physical model and a numerical computational scheme for their precise computation.

Design/methodology/approach

The main step in the physical modeling is the decomposition of the mechanical strain and the magnetic induction into a reversible and an irreversible part. For the efficient solution of the arising coupled nonlinear partial differential equations the authors apply the finite element method.

Findings

It can be demonstrated, that the hysteresis operators can be fitted by appropriate measurements. Therewith, the developed physical model and numerical simulation scheme is applicable for the design of magnetostrictive actuators and sensors.

Originality/value

The decomposition of the mechanical strain and the magnetic induction into a reversible and an irreversible part. The reversible part is described by the linear magnetostrictive constitutive equations, where the entries of the coupling tensor depend on the magnetization. The irreversible part of the magnetic induction is modeled by a Preisach hysteresis operator, and the irreversible part of the mechanical strain by a polynomial function depending on the magnetization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1989

At the start of a new year, Stephen McClelland gives a personal opinion on the most interesting sensor technologies to have emerged recently.

Abstract

At the start of a new year, Stephen McClelland gives a personal opinion on the most interesting sensor technologies to have emerged recently.

Details

Sensor Review, vol. 9 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 9 October 2018

Zhu Feng, Shaotao Zhi, Lei Guo, Chong Lei and Yong Zhou

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Abstract

Purpose

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Design/methodology/approach

The amorphous ribbons were annealed in transverse and longitudinal magnetic field. The influence of different field annealing directions on GMI effect and impedance Z, resistance R and reactance X with a series of line width have been deeply analyzed.

Findings

In comparison with GMI sensors microfabricated by unannealed and transversal field annealed ribbons, GMI sensor which was designed and microfabricated by longitudinal field anneal ribbon performs better. The results can be explained by the domain wall motion and domain rotation during annealing process and the geometric structure of Co-based GMI sensor. In addition, shrinking the line width of GMI sensor can promote GMI effect significantly because of the effect of demagnetizing field, and the optimum GMI ratio is 209.7 per cent in longitudinal field annealed GMI sensor with 200 μm line width.

Originality/value

In conclusion, annealing in longitudinal magnetic field and decreasing line width can enhance GMI effect in micro-patterned Co-based amorphous ribbon.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 January 2021

Waheed Ur Rehman, Xinhua Wang, Yingchun Chen, Xiaogao Yang, Zia Ullah, Yiqi Cheng and Marya Kanwal

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing…

Abstract

Purpose

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing algorithms.

Design/methodology/approach

Active lubrication has ability to overcome the unpredictable harsh environmental conditions which often lead to failure of capillary controlled traditional hydrostatic journal bearing. The research develops a mathematical model for a servo feedback-controlled hydrostatic journal bearing and dynamics of model is analyzed with different control techniques. The fractional-order PID control system is tuned by using particle swarm optimization and Nelder mead optimization techniques with the help of using multi-objective performance criteria.

Findings

The results of the current research are compared with previously published theoretical and experimental results. The proposed servo-controlled active bearing system is studied under a number of different dynamic situations and constraints of variable spindle speed, external load, temperature changes (viscosity) and variable bearing clearance (oil film thickness). The simulation results show that the proposed system has better performance in terms of controllability, faster response, stability, high stiffness and strong resistance.

Originality/value

This paper develops an accurate mathematical model for servo-controlled hydrostatic bearing with fractional order controller. The results are in excellent agreement with previously published literature.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0272

1 – 10 of 10