Search results

1 – 10 of 163
Article
Publication date: 7 September 2021

Alolote Amadi

The study is carried out to analytically reconnoiter geotechnical index properties of subgrade soils as key variables that shape the cost profile of road infrastructure projects…

Abstract

Purpose

The study is carried out to analytically reconnoiter geotechnical index properties of subgrade soils as key variables that shape the cost profile of road infrastructure projects in a tropical geographic setting with starkly heterogenous ground conditions.

Design/methodology/approach

Using the Niger Delta region, as a point of reference, data on geotechnical index properties of subgrade soils at spatially dispersed locations for 61 completed highway projects are collated. Exploratory statistical tests were carried out to infer significant associations with final project costs before regression analysis. Regression analysis is principally deployed as an explanatory analytical tool, relevant to quantify the sensitivity of highway project costs to the individual and collective impact of geotechnical variables.

Findings

Several parameters of expansivity and compressibility exhibited significantly strong associations with the final costs recorded on the highway projects. The statistical analysis further established a cause-effect relationship, whereby small changes in the geotechnical properties of sub-grade soils at project locations, would result in disproportionately large changes in the cost of road construction.

Practical implications

The study findings provide insight into the sensitivity of road construction costs to geotechnical variables, which can serve as a useful input in financial risk analysis for development appraisal and the generation of location adjustment factors.

Originality/value

The study statistically demonstrates location-induced construction cost profiles, triggered in response to the spatial geotechnical variability and occurrence of problem subgrade soils in the humid tropics, which may be different from those traditionally established in studies of cold and temperate climate soils.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 December 2023

Alolote Ibim Amadi

This study aims to investigate ground-related design deficiencies as potential avenues of avoidable cost overruns, discernible from the geotechnical practices of highway agencies…

Abstract

Purpose

This study aims to investigate ground-related design deficiencies as potential avenues of avoidable cost overruns, discernible from the geotechnical practices of highway agencies in the Niger Delta region of Nigeria.

Design/methodology/approach

The study deploys an interpretivist qualitative methodology to provide a detailed descriptive analysis of the design-related geotechnical practices of highway agencies during the pre-contract phase of highway projects. Semi-structured interviews were conducted with in-house professionals, consultants and contractors affiliated with the three highway agencies in the Niger Delta and thematically analysed to identify significant deviations from geotechnical best practices.

Findings

The study outcome shows that during the pre-contract phase, a chain of design-related geotechnical shortcomings has plagued highway projects executed in the Niger Delta. This view of practice uncovered in this study demonstrates a culture of significant deviation from best practice recommendations, which could plausibly contribute to the history of significant project cost overruns recorded in the region.

Originality/value

The study qualitatively spotlights gaps in the practice of highway agencies and reinforces the need for a re-orientation of the attitude to risk management, to give geotechnical concerns a priority in the financial management of highway projects executed in the Niger Delta region of Nigeria.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Book part
Publication date: 27 September 2023

Joel A. Sloan, Melissa S. Beauregard and M. Mark Russell

When implemented effectively and systematically across a curriculum, high impact practices (HIP) have the potential to increase student engagement and result in higher student…

Abstract

When implemented effectively and systematically across a curriculum, high impact practices (HIP) have the potential to increase student engagement and result in higher student achievement. The United States Air Force Academy (USAFA) is a four-year military university with a large liberal education core curriculum that provides the foundation for service and officership in the United States Air or Space Forces. Building on the liberal education core, the civil engineering (CE) major’s courses begin with the cornerstone field engineering course, paired with a two-week co-curricular experience for students at an Air or Space Force installation. With its motto “construct first, design later,” the field engineering course is an HIP and quintessential experiential learning course that gives students a practical frame-of-reference for future analysis and design courses. The CE major culminates with another HIP, the capstone design course, which gives students the opportunity to demonstrate their skills, building confidence in their ability to successfully apply those skills to the increasingly complex problems they will face after graduation. This book chapter provides a case study of the CE major at the USAFA, documenting the HIPs across the majors’ program, and highlighting the key elements and benefits of each.

Details

High Impact Practices in Higher Education: International Perspectives
Type: Book
ISBN: 978-1-80071-197-6

Keywords

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 May 2023

Margaret MacQueen, Michael Lawson and Wen-Nyi Ding

In the UK, responses to intense weather events regarding national and regional level perils include the support of a General Insurance policy at the address level as part of…

Abstract

Purpose

In the UK, responses to intense weather events regarding national and regional level perils include the support of a General Insurance policy at the address level as part of private residential and other insurance policies covering the key risks of flooding, subsidence and windstorm. In respect of the subsidence peril, dry summers can lead to many thousands of properties on shrinkable clay soils suffering differential downward movement as water is abstracted from the soil by vegetation. These events are forecast to increase in frequency and severity due to climate change, with costs for a dry event year of more than £500m to UK insurers. Assessing the character of these event years can inform government, local government, insurers and their agents as to the typical characteristics of an event year and its impacts. The purpose of this paper is to provide a comprehensive overview of the 2018 UK subsidence event year as it relates to trees and low rise buildings.

Design/methodology/approach

The research material is taken from claims that originated within the period commencing in the Summer of 2018, which in the UK was dry and with high levels of claim notification, and is from the private database of Property Risk Inspection Limited, one of the largest UK specialist subsidence claims handling businesses.

Findings

The data clearly illustrates the wide range of vegetative species causing or contributing to claims in the UK, their age ranges, sizes and conditions, management options and the range of land uses and statutory controls that exist in relation to title and other boundaries.

Originality/value

There have been various small-scale studies looking at individual cases of subsidence and the impacts of vegetation, but there have been no detailed investigations of large-scale claims-driven events such as the 2018 surge. The importance of this population-level investigation will only increase given the modelling for increased hot and dry summers over the coming decades.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 5 August 2020

Francesco Pomponi, Robert Crawford, André Stephan, Jim Hart and Bernardino D'Amico

The construction and operation of buildings is a major contributor to global energy demand, greenhouse gases emissions, resource depletion, waste generation, and associated…

Abstract

The construction and operation of buildings is a major contributor to global energy demand, greenhouse gases emissions, resource depletion, waste generation, and associated environmental effects, such as climate change, pollution and habitat destruction. Despite its wide relevance, research on building-related environmental effects often fails to achieve global visibility and attention, particularly in premiere interdisciplinary journals – thus representing a major gap in the research these journals offer. In this article we review and reflect on the factors that are likely causing this lack of visibility for such a prominent research topic and emphasise the need to reconcile the construction and operational phases into the physical unity of a building, to contribute to the global environmental discourse using a lifecycle-based approach. This article also aims to act as a call for action and to raise awareness of this important gap. The evidence contained in the article can support institutional policies to improve the status quo and provide a practical help to researchers in the field to bring their work to wide interdisciplinary audiences.

Details

Emerald Open Research, vol. 1 no. 5
Type: Research Article
ISSN: 2631-3952

Keywords

Article
Publication date: 2 November 2023

Minyi Zhu, Guobin Gong, Xuehuiru Ding and Stephen Wilkinson

The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element…

Abstract

Purpose

The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element method (DEM) simulations.

Design/methodology/approach

The pre-shearing history is mimicked under drained conditions (triaxial compression) with different pre-shearing strain levels ranging from 0% to 2%. The pre-consolidation history is mimicked by increasing the isotropic compression to different levels ranging from 100 kPa to 300 kPa. The macroscopic and microscopic behaviours are analysed and compared.

Findings

Temporary liquefaction, or quasi-steady state (QSS), is observed in most samples. A higher pre-shearing or pre-consolidation level can provide higher liquefaction resistance. The ultimate state line is found to be unique and independent of the pre-loading histories in stress space. The Lade instability line prematurely predicts the onset of liquefaction for all samples, both with and without pre-loading histories. The redundancy index is an effective microscopic indicator to monitor liquefaction, and the onset of the liquefaction corresponds to the phase transition state where the value of redundancy index is one, which is true for all cases irrespective of the proportions of sliding contacts.

Originality/value

The liquefaction behaviour of granular materials still remains elusive, especially concerning the effects of pre-loading histories on soils. Furthermore, the investigation of the effects of pre-consolidation histories on undrained behaviour and its comparison to pre-sheared samples is rarely reported in the DEM literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 February 2024

Ernest Orji Akudo, Godwin Okumagbe Aigbadon, Kizito O. Musa, Muawiya Baba Aminu, Nanfa Andrew Changde and Emmanuel K. Adekunle

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a…

Abstract

Purpose

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a geotechnical assessment of subgrade soils in affected areas.

Design/methodology/approach

The methods entailed field and laboratory methods and statistical analysis. Subgrade soil samples were retrieved from a depth of 1,000 mm beneath the failed portions using a hang auger. The soils were analyzed for natural moisture content (NMC), Atterberg limit (liquid limit, plastic limit and linear shrinkage), grain size distribution, compaction and California bearing ratio (CBR), respectively.

Findings

The results of the geotechnical tests ranged from NMC (12.5%–19.4%), sand (84%–98%), fines (2%–16%), LL (16.0%–32.2%), PL (17%–27.5%), LS (2.7%–6.4%), PI (2.5%–18.4%), maximum dry density (1756 kg/m2–1961 kg/m2), optimum moisture content (13.2%–20.2%), unsoaked CBR (15.5%–30.5%) and soaked CBR (8%–22%), respectively. Pearson’s correlation coefficient performed on the variables showed that some parameters exhibited a strong positive correlation with r2 > 0.5.

Research limitations/implications

Funding was the main limitation.

Originality/value

Comparing the results with Nigerian standards for road construction, and the AASHTO classification scheme, the subgrade soils are competent and possess excellent to good properties. The soils also exhibited very low plasticity, a high percentage of sand, high CBR and low NMC, which implies that it has the strength required for road pavement subgrades. The likely causes of the failures are, therefore, due to the use of poor construction materials, technical incompetence and poor compaction of sub-base materials, respectively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 November 2023

Chunli Li, Liang Li, Yungming Cheng, Liang Xu and Guangming Yu

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a…

Abstract

Purpose

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a systematical way.

Design/methodology/approach

The representative slip surfaces are identified and based on to calibrate multiple response surface functions with acceptable accuracy. The calibrated response surfaces are used to determine the yield acceleration in Newmark sliding displacement analysis. Then, the displacement-based limit state function is adopted to conduct seismic reliability analysis.

Findings

The calibrated response surface functions have fairly good accuracy in predicting the yield acceleration in Newmark sliding displacement analysis. The seismic reliability is influenced by such factors as PGA, spatial variability and threshold value. The proposed methodology serves as an effective tool for geotechnical practitioners.

Originality/value

The multiple sources of a seismic slope response can be effectively determined using the multiple response surface functions, which are easily implemented within geotechnical engineering.

1 – 10 of 163