Search results

1 – 10 of over 1000
Article
Publication date: 23 April 2015

Guimei Wang and Jiahao Zhang

This paper discusses the use of three-dimensional mapping software SolidWorks as a platform to build a parametric model of coal mine filling equipment and a model library of the…

Abstract

This paper discusses the use of three-dimensional mapping software SolidWorks as a platform to build a parametric model of coal mine filling equipment and a model library of the equipment. The Solidworks software is used to create a near-realistic virtual environment to simulate and analyze the process of building a high-water filling station. In this way, designers can detect potential design flaws early and then optimize the design as much as possible before actual construction.

Details

World Journal of Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 January 2018

Marlon Wesley Machado Cunico and Jonas de Carvalho

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently…

Abstract

Purpose

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently, recent developments have expanded the technologies, materials and applications in support of emerging needs, in addition to improving current processes. The present work aims to propose and characterise a new technology that is based on selective formation of metal-polymer composites with low power source.

Design/methodology/approach

To develop this project, the authors have divided this work in three parts: material development, process feasibility and process optimisation. For the polymeric material development, investigation of metallic and composite materials assessed each material’s suitability for selective composite formation besides residual material removal. The primary focus was the evaluation of proposed process feasibility. The authors applied multivariable methods, where the main responses were line width, penetration depth, residual material removal feasibility, layer adherence strength, mechanical strength and dimensional deviation of resultant object. The laser trace speed, distance between formation lines and laser diameter were the main variables. Removal agent and polymeric material formulation were constants. In the last part of this work, the authors applied a multi-objective optimisation. The optimisation objectives minimized processing time and dimensional deviation while maximizing mechanical strength in xy direction and mechanical strength in z direction.

Findings

With respect to material development, the polymeric material tensile strength was found between 30 and 45 MPa at break. It was also seen that this material has low viscosity before polymerized (between 2 and 20 cP) essential for composite formation and complete material removal. In that way, the authors also identified that the residual material removal process was possible by redox reaction. In contrast with that the final object was marked by the polymer which covers the metallic matrix, protecting the object protects against chemical reactions. For the feasibility study, the authors identified the process windows for adherence between composite layers, demonstrating the process feasibility. The composite mechanical strength was shown to be between 120 and 135 MPa in xy direction and between 35 and 45 MPa in z direction. In addition, the authors have also evidenced that the geometrical dimensional distortion might vary until 5 mm, depending on process configuration. Despite that, the authors identified an optimised configuration that exposes the potential application of this new technology. As this work is still in a preliminary development stage, further studies are needed to be done to better understand the process and market segments wherein it might be applied.

Originality/value

This paper proposed a new and innovative additive manufacturing technology which is based on metal-polymer composites using low power source. Additionally, this work also described studies related to the investigation of concept feasibility and proposed process characterisation. The authors have focused on material development and studied the functional feasibility, which at the same time might be useful to the development of other additive manufacturing processes.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 December 2019

Yanhui Sun, Junkang Guo, Jun Hong and Guanghui Liu

This paper aims to develop a theoretical method to analyze the rotation accuracy of rotating machinery with multi-support structures. The method effectively considers the geometric

Abstract

Purpose

This paper aims to develop a theoretical method to analyze the rotation accuracy of rotating machinery with multi-support structures. The method effectively considers the geometric errors and assembly deformation of parts.

Design/methodology/approach

A method composed of matrix and FEA methods is proposed to do the analysis. The deviation propagation analysis results and external loads are set as boundary conditions of the model which is built with Timoshenko beam elements to calculate the spatial pose of the rotor. The calculation is performed repeatedly as the rotation angle increased to get the rotation trajectories of concerned nodes, and further evaluation is done to get the rotation accuracy. Additionally, to get more reliable results, the bearing motion errors and stiffness are analyzed by a static model considering manufacturing errors of parts.

Findings

The feasibility of the proposed method is verified through a case study of a high-precision spindle. The method reasonably predicts the rotation accuracy of the spindle.

Originality/value

For rotating machinery with multi-support structures, the paper proposes a modeling method to predict the rotation accuracy, simultaneously considering geometric errors and assembly deformation of parts. This would improve the accuracy of tolerance analysis.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 April 2015

Oluwole Alfred Olatunji and Willy Sher

The purpose of this paper is to elicit the activities in geometric 3D computer-aided design (CAD) estimating. Construction estimators usually target the structural integrity of…

Abstract

Purpose

The purpose of this paper is to elicit the activities in geometric 3D computer-aided design (CAD) estimating. Construction estimators usually target the structural integrity of data underlying project designs while measuring quantities and developing estimates. However, there are different ways to this. There is considerable evidence to suggest substantial distinction between data structuring in geometric and parametric CAD (building information modelling). Each of these platforms also appeals to estimators in the various practice domains differently. Regardless, the developments in the use of geometric and parametric CAD for design and management purposes have been rapid.

Design/methodology/approach

The study focuses on the various perspectives within the different construction business domains. Interviews, focus group discussions and direct observation methods were used to explore data on estimating activities in 3D CAD from two public organizations, two large contracting firms, two quantity surveying consulting practices, two specialist-project companies and four software development and vending firms. These involved 17 middle-top management estimators who have had extensive experience in the industry. As the activities were elicited, participants were able to ascribe relative importance to each of the activities, and these were logically compared across the different practice domains.

Findings

Thirty-one activities were identified as the components of estimators’ procedures leading to reliable outcomes in estimating 3D CAD designs. Logical correlations were discussed through extant literature towards forming a centroid model which could be used for numerous industry applications, including software development, knowledge transfer between organizations, employees’ hands-on training, curriculum design for academic institutions and as a policy framework for professional institutions on estimating practice. Further areas of research were also highlighted.

Originality/value

This work is an original piece. It is neither published nor under consideration elsewhere.

Details

Journal of Financial Management of Property and Construction, vol. 20 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 26 March 2019

M.V.A. Raju Bahubalendruni, Anil Gulivindala, Manish Kumar, Bibhuti Bhusan Biswal and Lakshumu Naidu Annepu

The purpose of this paper is to develop an efficient hybrid method that can collectively address assembly sequence generation (ASG) and exploded view generation (EVG) problem…

Abstract

Purpose

The purpose of this paper is to develop an efficient hybrid method that can collectively address assembly sequence generation (ASG) and exploded view generation (EVG) problem effectively. ASG is an act of finding feasible collision free movement of components of a mechanical product in accordance with the assembly design. Although the execution of ASG is complex and time-consuming in calculation, it is highly essential for efficient manufacturing process. Because of numerous limitations of the ASG algorithms, a definite method is still unavailable in the computer-aided design (CAD) software, and therefore the explosion of the product is not found to be in accordance with any feasible disassembly sequence (disassembly sequence is reverse progression of assembly sequence). The existing EVG algorithms in the CAD software result in visualization of the entire constituent parts of the product over single screen without taking into consideration the feasible order of assembly operations; thus, it becomes necessary to formulate an algorithm which effectively solves ASG and EVG problem in conjugation. This requirement has also been documented as standard in the “General Information Concerning Patents: 1.84 Standards for drawings” in the United States Patent and Trademark office (2005) which states that the exploded view created for any product should show the relationship or order of assembly of various parts that are permissible.

Design/methodology/approach

In this paper, a unique ASG method has been proposed and is further extended for EVG. The ASG follows a deterministic approach to avoid redundant data collection and calculation. The proposed method is effectively applied on products which require such feasible paths of disassembly other than canonical directions.

Findings

The method is capable of organizing the assembly operations as linear or parallel progression of assembly such that the assembly task is completed in minimum number of stages. This result is further taken for EVG and is found to be proven effective.

Originality/value

Assembly sequence planning (ASP) is performed most of the times considering the geometric feasibility along canonical axes without considering parallel possibility of assembly operations. In this paper, the proposed method is robust to address this issue. Exploded view generation considering feasible ASP is also one of the novel approaches illustrated in this paper.

Article
Publication date: 18 October 2018

Zhicheng Huang, Jean-Yves Dantan, Alain Etienne, Mickaël Rivette and Nicolas Bonnet

One major problem preventing further application and benefits from additive manufacturing (AM) nowadays is that AM build parts always end up with poor geometrical quality. To help…

Abstract

Purpose

One major problem preventing further application and benefits from additive manufacturing (AM) nowadays is that AM build parts always end up with poor geometrical quality. To help improving geometrical quality for AM, this study aims to propose geometrical deviation identification and prediction method for AM, which could be used for identifying the factors, forms and values of geometrical deviation of AM parts.

Design/methodology/approach

This paper applied the skin model-based modal decomposition approach to describe the geometrical deviations of AM and decompose them into different defect modes. On that basis, the approach to propose and extend defect modes was developed. Identification and prediction of the geometrical deviations were then carried out with this method. Finally, a case study with cylinders manufactured by fused deposition modeling was introduced. Two coordinate measuring machine (CMM) machines with different measure methods were used to verify the effectiveness of the methods and modes proposed.

Findings

The case study results with two different CMM machines are very close, which shows that the method and modes proposed by this paper are very effective. Also, the results indicate that the main geometrical defects are caused by the shrinkage and machine inaccuracy-induced errors which have not been studied enough.

Originality/value

This work could be used for identifying and predicting the forms and values of AM geometrical deviation, which could help realize the improvement of AM part geometrical quality in design phase more purposefully.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 November 2022

Mukunthan S., Manu R. and Deepak Lawrence K.

This paper aims to propose a method to automate the tolerance analyses of mechanical assembly using STandard for the Exchange of Product model data-Application Protocol Part 242…

95

Abstract

Purpose

This paper aims to propose a method to automate the tolerance analyses of mechanical assembly using STandard for the Exchange of Product model data-Application Protocol Part 242 (STEP AP 242) files derived from the 3-D computer-aided design (CAD) models.

Design/methodology/approach

Product manufacturing information and mating information available in ISO 10303 STEP AP242 files resulting from the 3-D CAD model of mechanical assembly are extracted. The extracted geometric attributes, geometric dimensioning and tolerancing (GD&T) and mating information are used to automatically generate assembly graph and mating edges required for the tolerance analyses of the mechanical assembly by using the matrix approach.

Findings

The feasibility of the proposed method is verified through two mechanical assembly case studies. The results of manual calculations and tolerance values computed by the automated method are very closely matching.

Practical implications

Tolerance analysis is an integral part of product development that directly influences the cost and performance of a product. Apart from the academic interest, the work is expected to have positive implications for the digital design and smart manufacturing industry that involve in the development of solutions for automation of design and manufacturing system functions.

Originality/value

The approach presented in the paper that aids the automation of tolerance analyses of mechanical assembly is an innovative application of the STEP AP 242 file. The automation of tolerance analyses would improve the productivity and efficiency of the product realization process.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 March 2013

M. Rivette, P. Mognol and J.Y. Hascoet

The purpose of this paper is to propose a method to obtain hybrid rapid tools with elementary component assembly.

Abstract

Purpose

The purpose of this paper is to propose a method to obtain hybrid rapid tools with elementary component assembly.

Design/methodology/approach

The authors' method proposes a functional representational model, starting with the product features, analyzed from three points of view: a feasibility analysis; a manufacturing analysis; and an assembly and synthesis analysis. This method, based on CAD STEP AP‐224 data, makes it possible to obtain an exhaustive list of solutions for the module. The work is illustrated with an industrial example. To construct the Assembly Identity Card (AIC) and test the various parameters that influence the quality of the injected parts, a hybrid injection mold has been produced. The methodology associated with the use of this AIC uses a “representation graph”, which makes it possible to propose a set of valid solutions for assembling the various tooling modules. This method is validated by industrial example.

Findings

The product part is decomposed into a multi‐component prototype (MCP), instead of being made as a single part, which optimizes the manufacturing process and enables greater reactivity during the development of the product.

Research limitations/implications

The final goal is to propose a software assistant used in association with CAD system during the design of hybrid rapid tooling. An important work concerning the features recognition must be implemented. The assembly of the different parts of the hybrid rapid tooling must be considered and optimized.

Practical implications

This method allows the selection of the best process technologies from manufacturing tools.

Originality/value

The analysis of manufacturing hybrid rapid tooling has not been studied previously.

Details

Rapid Prototyping Journal, vol. 19 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000