Search results

1 – 10 of 99
Article
Publication date: 16 April 2024

Sonali Khatua, Manoranjan Dash and Padma Charan Mishra

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and…

Abstract

Purpose

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and life cycles. This study aims to depict the development and life cycle of large open-pit iron ore mines and the intertwined organizational design of the departments/sections operated within the industry.

Design/methodology/approach

Primary data were collected on the site by participant observation, in-depth interviews of the field staff and executives, and field notes. Secondary data were collected from the literature review to compare and cite similar or previous studies on each mining activity. Finally, interactions were conducted with academic experts and top field executives to validate the findings. An organizational ethnography methodology was employed to study and analyse four large-scale iron ore mines of India’s largest iron-producing state, Odisha, from January to April 2023.

Findings

Six stages were observed for development and life cycle, and the operations have been depicted in a schematic diagram for ease of understanding. The intertwined functioning of organizational set-up is also discovered.

Originality/value

The paper will benefit entrepreneurs, mining and geology students, new recruits, and professionals in allied services linked to large iron ore mines. It offers valuable insights for knowledge enhancement, operational manual preparation and further research endeavours.

Details

Journal of Organizational Ethnography, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6749

Keywords

Article
Publication date: 9 February 2024

Chengpeng Zhang, Zhihua Yu, Jimin Shi, Yu Li, Wenqiang Xu, Zheyi Guo, Hongshi Zhang, Zhongyuan Zhu and Sheng Qiang

Hexahedral meshing is one of the most important steps in performing an accurate simulation using the finite element analysis (FEA). However, the current hexahedral meshing method…

Abstract

Purpose

Hexahedral meshing is one of the most important steps in performing an accurate simulation using the finite element analysis (FEA). However, the current hexahedral meshing method in the industry is a nonautomatic and inefficient method, i.e. manually decomposing the model into suitable blocks and obtaining the hexahedral mesh from these blocks by mapping or sweeping algorithms. The purpose of this paper is to propose an almost automatic decomposition algorithm based on the 3D frame field and model features to replace the traditional time-consuming and laborious manual decomposition method.

Design/methodology/approach

The proposed algorithm is based on the 3D frame field and features, where features are used to construct feature-cutting surfaces and the 3D frame field is used to construct singular-cutting surfaces. The feature-cutting surfaces constructed from concave features first reduce the complexity of the model and decompose it into some coarse blocks. Then, an improved 3D frame field algorithm is performed on these coarse blocks to extract the singular structure and construct singular-cutting surfaces to further decompose the coarse blocks. In most modeling examples, the proposed algorithm uses both types of cutting surfaces to decompose models fully automatically. In a few examples with special requirements for hexahedral meshes, the algorithm requires manual input of some user-defined cutting surfaces and constructs different singular-cutting surfaces to ensure the effectiveness of the decomposition.

Findings

Benefiting from the feature decomposition and the 3D frame field algorithm, the output blocks of the proposed algorithm have no inner singular structure and are suitable for the mapping or sweeping algorithm. The introduction of internal constraints makes 3D frame field generation more robust in this paper, and it can automatically correct some invalid 3–5 singular structures. In a few examples with special requirements, the proposed algorithm successfully generates valid blocks even though the singular structure of the model is modified by user-defined cutting surfaces.

Originality/value

The proposed algorithm takes the advantage of feature decomposition and the 3D frame field to generate suitable blocks for a mapping or sweeping algorithm, which saves a lot of simulation time and requires less experience. The user-defined cutting surfaces enable the creation of special hexahedral meshes, which was difficult with previous algorithms. An improved 3D frame field generation method is proposed to correct some invalid singular structures and improve the robustness of the previous methods.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 December 2023

Dara Sruthilaya, Aneetha Vilventhan and P.R.C. Gopal

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation…

Abstract

Purpose

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation Laboratory (DEMATEL). The study provides qualitative and quantitative analysis of project complexities factors and their relationships. The results of the study facilitate effective project planning, proactive risk management and informed decision-making by stakeholders.

Design/methodology/approach

This study employs a case-based method for identifying PCFs and a DEMATEL method for analyzing the interdependence of complexity factors in metro rail projects. Initially, PCFs were identified through an extensive literature review. To validate and refine these factors, semi-structured interviews were conducted with thirty experienced professionals, each having 5–20 years of experience in roles such as project management, engineering, and planning. Further, elevated and underground metro rail projects were purposefully selected as cases, for identifying the similarities and differences in PCFs. A questionnaire survey was conducted with various technical experts in metro rail projects. These experts rated the impact of PCFs on a five-point Likert scale, for the evaluation of the interdependence of PCFs. The DEMATEL technique was used to analyze the interdependencies of the PCFs.

Findings

Metro rail projects are influenced by project complexity, which significantly impacts their performance. The analysis reveals that “design problems with existing structures,” “change in design or construction” and “land acquisition” are the key factors contributing to project complexity.

Originality/value

The study of project complexity in metro rail projects is limited because most of the studies have studies on examining complexity in mega projects. The existing literature lacks adequate attention in identifying project complexity and its effects on metro rail project performance. This research aims to bridge this gap by examining project complexity and interdependencies in metro rail projects.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 13 September 2022

Mohamed Nabil Houhou, Tamir Amari and Abderahim Belounar

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on…

134

Abstract

Purpose

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on the additional single pile responses in terms of bending moment, lateral deflection, axial force, shaft resistance and pile settlement. Subsequently, a series of parametric studies were carried out to better understand the responses of single piles induced by tunneling. To give further understanding regarding the pile groups, a 2 × 2 pile group with two different pile head conditions, namely, free and capped, was considered.

Design/methodology/approach

Using the PLAXIS three-dimensional (3D) software, a full 3D numerical modeling is performed to investigate the effects of ground movements caused by tunneling on adjacent pile foundations. The numerical model was validated using centrifuge test data found in the literature. The relevance of the 3D model is also judged by comparison with the 2D plane strain model using the PLAXIS 2D code.

Findings

The numerical test results reveal that tunneling induces significant displacements and internal forces in nearby piles. The magnitude and distribution of internal forces depend mainly on the position of the pile toe relative to the tunnel depth and the distance between the pile and the vertical axis of the tunnel. As the volume loss increases from 1% to 3%, the apparent loss of pile capacity increases from 11% to 20%. By increasing the pile length from 0.5 to 1.5 times, the tunnel depth, the maximum pile settlement and lateral deflection decrease by about 63% and 18%, respectively. On the other hand, the maximum bending moment and axial load increase by about 7 and 13 times, respectively. When the pile is located at a distance of 2.5 times the tunnel diameter (Dt), the additional pile responses become insignificant. It was found that an increase in tunnel depth from 1.5Dt to 2.5Dt (with a pile length of 3Dt) increases the maximum lateral deflection by about 420%. Regarding the interaction between tunneling and group of piles, a positive group effect was observed with a significant reduction of the internal forces in rear piles. The maximum bending moment of the front piles was found to be higher than that of the rear piles by about 47%.

Originality/value

Soil is a complex material that shows differently in primary loading, unloading and reloading with stress-dependent stiffness. This general behavior was not possibly being accounted for in simple elastic perfectly plastic Mohr–Coulomb model which is often used to predict the behavior of soils. Thus, in the present study, the more advanced hardening soil model with small-strain stiffness (HSsmall) is used to model the non-linear stress–strain soil behavior. Moreover, unlike previous studies THAT are usually based on the assumption that the soil is homogeneous and using numerical methods by decoupled loadings under plane strain conditions; in this study, the pile responses have been exhaustively investigated in a two-layered soil system using a fully coupled 3D numerical analysis that takes into account the real interactions between tunneling and pile foundations. The paper presents a distinctive set of findings and insights that provide valuable guidance for the design and construction of shield tunnels passing through pile foundations.

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 December 2022

Benna Hu, Laifu Wen and Xuemei Zhou

Vertical electrical sounding (VES) and Rayleigh wave exploration are widely used in the exploration of near-surface structure, but both have limitations. This study aims to make…

Abstract

Purpose

Vertical electrical sounding (VES) and Rayleigh wave exploration are widely used in the exploration of near-surface structure, but both have limitations. This study aims to make full use of the advantages of the two methods, reduce the multiple solutions of single inversion and improve the accuracy of the inversion. Thus, a nonlinear joint inversion method of VES and Rayleigh wave exploration based on improved differential evolution (DE) algorithm was proposed.

Design/methodology/approach

Based on the DE algorithm, a new initialization strategy was proposed. Then, taking AK-type with high-velocity interlayer model and HA-type with low-velocity interlayer model near the surface as examples, the inversion results of different methods were compared and analyzed. Then, the proposed method was applied to the field data in Chengde, Hebei Province, China. The stratum structure was accurately depicted and verified by drilling.

Findings

The synthetic data and field data results showed that the joint inversion of VES and Rayleigh wave data based on the improved DE algorithm can effectively improve the interpretation accuracy of the single-method inversion and had strong stability and large generalizable ability in near-surface engineering problems.

Originality/value

A joint inversion method of VES and Rayleigh wave data based on improved DE algorithm is proposed, which can improve the accuracy of single-method inversion.

Article
Publication date: 29 January 2024

John Pearson

This paper aims to consider the potential implications of the layering of regulation in relation to hydraulic fracturing (fracking) at the borders between the nations of the UK.

Abstract

Purpose

This paper aims to consider the potential implications of the layering of regulation in relation to hydraulic fracturing (fracking) at the borders between the nations of the UK.

Design/methodology/approach

This paper uses a qualitative research method grounded in particular in legal geography to examine the existing approaches to regulating hydraulic fracturing and identify the places and their features that are constructed as a result of their intersection at the borders of the nations comprising the UK.

Findings

The current regulatory framework concerning hydraulic fracturing risks restricts the places in which the practice can occur in such a manner as to potentially cause greater environmental harm should the process be used. The regulations governing the process are not aligned in relation to the surface and subsurface aspects of the process to enable their management, once operational, as a singularly constructed place of extraction. Strong regulation at the surface can have the effect of influencing placement of the site only in relation to the place at which the resource sought reaches the surface, whilst having little to no impact on the environmental harms, which will result at the subsurface or relative to other potential surface site positions, and potentially even increasing them.

Research limitations/implications

This paper is limited by uncertainty as to the future use of hydraulic fracturing to extract oil and gas within the UK. The issues raised within it would also be applicable to other extractive industries where a surface site might be placed within a radius of the subsurface point of extraction, rather than having to be located at a fixed point relative to that in the subsurface. This paper therefore raises concerns that might be explored more generally in relation to the regulation of the place of resource extraction, particularly at legal borders between jurisdictions, and the impact of regulation, which does not account for the misalignment of regulation of spaces above and below the surface that form a single place at which extraction occurs.

Social implications

This paper considers the potential impacts of misaligned positions held by nations in the UK in relation to environmentally harmful practices undertaken by extractive industries, which are highlighted by an analysis of the extant regulatory framework for hydraulic fracturing.

Originality/value

Whilst the potential for cross internal border extraction of gas within the UK via hydraulic fracturing and the regulatory consequences of this has been highlighted in academic literature, this paper examines the implications of regulation for the least environmentally harmful placement of the process.

Details

Journal of Place Management and Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8335

Keywords

Open Access
Article
Publication date: 1 March 2022

Elisabetta Colucci, Francesca Matrone, Francesca Noardo, Vanessa Assumma, Giulia Datola, Federica Appiotti, Marta Bottero, Filiberto Chiabrando, Patrizia Lombardi, Massimo Migliorini, Enrico Rinaldi, Antonia Spanò and Andrea Lingua

The study, within the Increasing Resilience of Cultural Heritage (ResCult) project, aims to support civil protection to prevent, lessen and mitigate disasters impacts on cultural…

2036

Abstract

Purpose

The study, within the Increasing Resilience of Cultural Heritage (ResCult) project, aims to support civil protection to prevent, lessen and mitigate disasters impacts on cultural heritage using a unique standardised-3D geographical information system (GIS), including both heritage and risk and hazard information.

Design/methodology/approach

A top-down approach, starting from existing standards (an INSPIRE extension integrated with other parts from the standardised and shared structure), was completed with a bottom-up integration according to current requirements for disaster prevention procedures and risk analyses. The results were validated and tested in case studies (differentiated concerning the hazard and type of protected heritage) and refined during user forums.

Findings

Besides the ensuing reusable database structure, the filling with case studies data underlined the tough challenges and allowed proposing a sample of workflows and possible guidelines. The interfaces are provided to use the obtained knowledge base.

Originality/value

The increasing number of natural disasters could severely damage the cultural heritage, causing permanent damage to movable and immovable assets and tangible and intangible heritage. The study provides an original tool properly relating the (spatial) information regarding cultural heritage and the risk factors in a unique archive as a standard-based European tool to cope with these frequent losses, preventing risk.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 14 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 1 November 2023

Hamed Abdelreheem Ead

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry…

Abstract

Purpose

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry, biology, math, geology, astronomy and engineering. The paper highlights the struggles and successes of these scientists, as well as the cultural, social and political factors that influenced their lives and work. The aim is to inspire young people to pursue careers in science and make their own contributions to society by presenting these scientists as role models for hard work and dedication. Ultimately, the paper seeks to promote the importance of science and its impact on society.

Design/methodology/approach

The purpose of this review is to present the scientific biographies of Egypt's most distinguished scientists, primarily in the field of Natural Sciences, in a balanced and comprehensive manner. The work is objective, honest and abstract, avoiding any bias or exaggeration. The author provides a clear and concise methodology, including a brief introduction to the scientist and their field of study, an explanation of their major contributions, the impact of their work on society, any challenges or obstacles faced during their career and their lasting legacy. The aim is to showcase the important achievements of these scientists, their impact on their respective fields and to inspire future generations to pursue scientific careers.

Findings

The group of outstanding scientists in 20th century Egypt were shaped by various factors, including familial upbringing, education, society, political and cultural atmosphere and state support for scientific research. These scientists made significant contributions to various academic disciplines, including medicine, physics, chemistry, biology, mathematics and engineering. Their impact on their communities and cultures has received international acclaim, making them role models for future generations of scientists and researchers. The history of these scientists highlights the importance of educational investments and supporting scientific research to foster innovation and social progress. The encyclopedia serves as a useful tool for students, instructors and education professionals, preserving Egypt's scientific heritage and honouring the scientists' outstanding accomplishments.

Research limitations/implications

The encyclopedia preserves Egypt's scientific heritage, which has been overlooked for political or other reasons. It is a useful tool for a variety of readers, including students, instructors and education professionals, and it offers insights into universally relevant scientific success factors as well as scientific research methodologies. The encyclopedia honours the outstanding scientific accomplishments of Egyptian researchers and their contributions to the world's scientific community.

Practical implications

The practical implications of this paper are several. First, it highlights the importance of education, family upbringing and societal support for scientific research in fostering innovation and social progress. Second, it underscores the need for continued funding and support for scientific research to maintain and build upon the accomplishments of past generations of scientists. Third, it encourages young people to pursue scientific careers and make their own contributions to society. Fourth, it preserves the scientific heritage of Egypt and honors the contributions of its outstanding scientists. Finally, it serves as a useful tool for students, instructors and education professionals seeking to understand the factors underlying scientific success and research methodologies.

Social implications

The social implications of the paper include promoting national pride and cultural identity, raising awareness of the importance of education and scientific research in driving social progress, inspiring future generations of scientists and researchers, reducing socioeconomic disparities and emphasizing the role of society, politics and culture in shaping scientific researchers' personalities and interests.

Originality/value

The paper's originality/value lies in its comprehensive documentation of the scientific biographies of Egypt's most prominent scientists in the 20th century, providing unique insights into the factors that contributed to their development and their impact across various academic disciplines. It preserves Egypt's scientific heritage and inspires future generations of scientists and researchers through the promotion of educational investments and scientific research. The encyclopedia serves as a useful tool for education professionals seeking to understand scientific success factors and research methodologies, emphasizing the importance of supportive and inclusive environments for scientific development.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 18 March 2024

A.J. Faas and Jhaid Parreno

The purpose of this study is to identify LGBTQ+ perceptions of and experiences with hazards, vulnerabilities and disasters in the San Francisco Bay Area in the USA and to…

Abstract

Purpose

The purpose of this study is to identify LGBTQ+ perceptions of and experiences with hazards, vulnerabilities and disasters in the San Francisco Bay Area in the USA and to co-develop applied projects to “queer” disaster knowledge production and risk reduction activities in the region.

Design/methodology/approach

This is a community science project in which we collaborate with community members to enhance both community and scientific knowledge with the goal of utilizing it to produce a positive change to pressing social issues and their underlying causes. We do this through a series of four focus group workshops to identify community priorities, hazards, vulnerabilities and local action. We follow this with further ethnographic research and projects to apply findings from phase one.

Findings

The authors have found that: LGBTQ+ people in the Bay Area have unique experiences with hazards, vulnerabilities and disasters; there are significant gaps in the representation of LGBTQ+ hazard exposure in local scientific models that we can address through alternative methodologies; and tabletop exercises, learning modules and podcasts help orient and train disaster response agencies and personnel on LGBTQ+ inclusive operations.

Originality/value

This initiative entails novel approaches to community science for disaster risk reduction and creative collaboration with community-based organizations to foster the development of LGBTQ+ inclusive disaster risk reduction and response.

Details

Disaster Prevention and Management: An International Journal, vol. 33 no. 2
Type: Research Article
ISSN: 0965-3562

Keywords

1 – 10 of 99