Search results

1 – 10 of 894
Article
Publication date: 26 June 2023

Somia Boubedra, Cherif Tolba, Pietro Manzoni, Djamila Beddiar and Youcef Zennir

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding…

Abstract

Purpose

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding the optimal routes in urban scenarios is very challenging since it should consider reducing traffic jams, optimizing travel time, decreasing fuel consumption and reducing pollution levels accordingly. In this regard, the authors propose an enhanced approach based on the Ant Colony algorithm that allows vehicle drivers to search for optimal routes in urban areas from different perspectives, such as shortness and rapidness.

Design/methodology/approach

An improved ant colony algorithm (ACO) is used to calculate the optimal routes in an urban road network by adopting an elitism strategy, a random search approach and a flexible pheromone deposit-evaporate mechanism. In addition, the authors make a trade-off between route length, travel time and congestion level.

Findings

Experimental tests show that the routes found using the proposed algorithm improved the quality of the results by 30% in comparison with the ACO algorithm. In addition, the authors maintain a level of accuracy between 0.9 and 0.95. Therefore, the overall cost of the found solutions decreased from 67 to 40. In addition, the experimental results demonstrate that the authors’ improved algorithm outperforms not only the original ACO algorithm but also popular meta-heuristic algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO) in terms of reducing travel costs and improving overall fitness value.

Originality/value

The proposed improvements to the ACO to search for optimal paths for urban roads include incorporating multiple factors, such as travel length, time and congestion level, into the route selection process. Furthermore, random search, elitism strategy and flexible pheromone updating rules are proposed to consider the dynamic changes in road network conditions and make the proposed approach more relevant and effective. These enhancements contribute to the originality of the authors’ work, and they have the potential to advance the field of traffic routing.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 20 July 2020

Mehmet Fatih Uslu, Süleyman Uslu and Faruk Bulut

Optimization algorithms can differ in performance for a specific problem. Hybrid approaches, using this difference, might give a higher performance in many cases. This paper…

1365

Abstract

Optimization algorithms can differ in performance for a specific problem. Hybrid approaches, using this difference, might give a higher performance in many cases. This paper presents a hybrid approach of Genetic Algorithm (GA) and Ant Colony Optimization (ACO) specifically for the Integrated Process Planning and Scheduling (IPPS) problems. GA and ACO have given different performances in different cases of IPPS problems. In some cases, GA has outperformed, and so do ACO in other cases. This hybrid method can be constructed as (I) GA to improve ACO results or (II) ACO to improve GA results. Based on the performances of the algorithm pairs on the given problem scale. This proposed hybrid GA-ACO approach (hAG) runs both GA and ACO simultaneously, and the better performing one is selected as the primary algorithm in the hybrid approach. hAG also avoids convergence by resetting parameters which cause algorithms to converge local optimum points. Moreover, the algorithm can obtain more accurate solutions with avoidance strategy. The new hybrid optimization technique (hAG) merges a GA with a local search strategy based on the interior point method. The efficiency of hAG is demonstrated by solving a constrained multi-objective mathematical test-case. The benchmarking results of the experimental studies with AIS (Artificial Immune System), GA, and ACO indicate that the proposed model has outperformed other non-hybrid algorithms in different scenarios.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2210-8327

Keywords

Article
Publication date: 4 April 2008

A. Kaveh and M. Shahrouzi

Genetic Algorithm, as a generalized constructive search method, has already been applied to various fields of optimization problems using different encoding schemes. In…

Abstract

Purpose

Genetic Algorithm, as a generalized constructive search method, has already been applied to various fields of optimization problems using different encoding schemes. In conventional GAs, the optimum solution is usually announced as the fittest feasible individual achieved in a limited number of generations. In this paper, such a pseudo‐optimum is extended to a neighborhood structure, known as optimal design family.

Design/methodology/approach

In this paper, the constructive feature of genetic search is combined with trail update strategy of ant colony approach in a discrete manner, in order to sample more competitive individuals from various subspaces of the search space as a dynamic‐memory of updating design family.

Findings

The proposed method is applied to structural layout and size optimization utilizing an efficient integer index encoding and its appropriate genetic operators. Different applications of the proposed method are illustrated using three truss and frame examples. In the first example, topological classes are identified during layout optimization. In the second example, an objective function containing the stress response, displacement response, and the weight of the structure is considered to solve the optimal design of non‐braced frames. This approach allows the selection of less sensitive designs among the family of solutions. The third example is selected for eigenvalue maximization with minimal number of bracings and structural weight for braced frames.

Originality/value

In this paper, a pseudo‐optimum is extended to a neighborhood structure, known as optimal design family.

Details

Engineering Computations, vol. 25 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2012

Hui Cheng, Yuan Li, Kai‐Fu Zhang, Chao Luan, Yan‐Wu Xu and Ming‐Hui Li

An appropriate fixture layout can decrease the assembly variation of Aeronautical Thin‐Walled Structure (ATWS) substantially. The purpose of this paper is to develop a fixture…

Abstract

Purpose

An appropriate fixture layout can decrease the assembly variation of Aeronautical Thin‐Walled Structure (ATWS) substantially. The purpose of this paper is to develop a fixture layout method to minimize variation.

Design/methodology/approach

The paper uses genetic algorithm and ants algorithm (GAAA) to optimize the fixture layout by first, analyzing the “N‐2‐1” positioning principle of ATWS riveting, and then developing a hierarchical fixture layout model to represent the base points and locating points of ATWS. Second, information of base points and locating points is coded as gene and chromosome, according to a special coding rule and the fixture layout model. The fitness is also defined by the assembly variation of key characteristic points (KCPs). Third, the genetic and ants manipulations are discussed individually, and the two parts are connected by threshold value of the probability for chromosome in the genetic manipulation.

Findings

The method can solve the fixture layout problem of ATWS with automated riveting efficiently, which is shown as an example in this paper.

Practical implications

The assembly variation is decreased by using the method presented in this paper according to the variation comparison.

Originality/value

The hierarchical fixture layout model is proposed for the first time in this paper and base points and locating points are optimized successfully by the GAAA.

Article
Publication date: 10 August 2021

Wan Liu, Zeyu Li, Li Chen, Dexin Zhang and Xiaowei Shao

This paper aims to innovatively propose to improve the efficiency of satellite observation and avoid the waste of satellite resources, a genetic algorithm with entropy operator…

Abstract

Purpose

This paper aims to innovatively propose to improve the efficiency of satellite observation and avoid the waste of satellite resources, a genetic algorithm with entropy operator (GAE) of synthetic aperture radar (SAR) satellites’ task planning algorithm.

Design/methodology/approach

The GAE abbreviated as GAE introduces the entropy value of each orbit task into the fitness calculation of the genetic algorithm, which makes the orbit with higher entropy value more likely to be selected and participate in the remaining process of the genetic algorithm.

Findings

The simulation result shows that in a condition of the same calculate ability, 85% of the orbital revisit time is unchanged or decreased and 30% is significantly reduced by using the GAE compared with traditional task planning genetic algorithm, which indicates that the GAE can improve the efficiency of satellites’ task planning.

Originality/value

The GAE is an optimization of the traditional genetic algorithm. It combines entropy in thermodynamics with task planning problems. The algorithm considers the whole lifecycle of task planning and gets the desired results. It can greatly improve the efficiency of task planning in observation satellites and shorten the entire task execution time. Then, using the GAE to complete SAR satellites’ task planning is of great significance in reducing satellite operating costs and emergency rescue, which brings certain economic and social benefits.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 January 2022

Yawen Wang and Weixian Xue

The purpose is to analyze and discuss the sustainable development (SD) and financing risk assessment (FRA) of resource-based industrial clusters under the Internet of Things (IoT…

Abstract

Purpose

The purpose is to analyze and discuss the sustainable development (SD) and financing risk assessment (FRA) of resource-based industrial clusters under the Internet of Things (IoT) economy and promote the application of Machine Learning methods and intelligent optimization algorithms in FRA.

Design/methodology/approach

This study used the Support Vector Machine (SVM) algorithm that is analyzed together with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) algorithm. First, Yulin City in Shaanxi Province is selected for case analysis. Then, resource-based industrial clusters are studied, and an SD early-warning model is implemented. Then, the financing Risk Assessment Index System is established from the perspective of construction-operation-transfer. Finally, the risk assessment results of Support Vector Regression (SVR) and ACO-based SVR (ACO-SVR) are analyzed.

Findings

The results show that the overall sustainability of resource-based industrial clusters and IoT industrial clusters is good in the Yulin City of Shaanxi Province, and the early warning model of GA-based SVR (GA-SVR) has been achieved good results. Yulin City shows an excellent SD momentum in the resource-based industrial cluster, but there are still some risks. Therefore, it is necessary to promote the industrial structure of SD and improve the stability of the resource-based industrial cluster for Yulin City.

Originality/value

The results can provide a direction for the research on the early warning and evaluation of the SD-oriented resource-based industrial clusters and the IoT industrial clusters, promoting the application of SVM technology in the engineering field.

Details

Journal of Enterprise Information Management, vol. 35 no. 4/5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 3 June 2019

Arif Abdullah, Mohd Fadzil Faisae Ab Rashid, S.G. Ponnambalam and Zakri Ghazalli

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims…

Abstract

Purpose

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims to improve profit and human-related factors, but it still lacks in the consideration of the environmental issue. This paper aims to present an energy-efficient model for the ASP problem.

Design/methodology/approach

The proposed model considered energy utilization during the assembly process, particularly idle energy utilization. The problem was then optimized using moth flame optimization (MFO) and compared with well-established algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). A computational test was conducted using five assembly problems ranging from 12 to 40 components.

Findings

The results of the computational experiments indicated that the proposed model was capable of generating an energy-efficient assembly sequence. At the same time, the results also showed that MFO consistently performed better in terms of the best and mean fitness, with acceptable computational time.

Originality/value

This paper proposed a new energy-efficient ASP model that can be a guideline to design assembly station. Furthermore, this is the first attempt to implement MFO for the ASP problem.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 April 2020

Mohammad Mehdi Pouria, Abbas Akbarpour, Hassan Ahmadi, Mohammad Reza Tavassoli and Amir Saedi Daryan

Offshore structures are among the structures exposed to fire more often. Most of these structures are likely to be associated with flammable materials. In this research, some of…

Abstract

Purpose

Offshore structures are among the structures exposed to fire more often. Most of these structures are likely to be associated with flammable materials. In this research, some of the structures constructed on top of marine decks have been studied.

Design/methodology/approach

For this purpose, the upper-bound theory of plastic analysis has been used to investigate its collapse behavior. In this way, genetic algorithm has been used for application of the combination of elementary mechanisms in the classic plastic analysis problem.

Findings

The studied structures are optimized by plastic analysis theory before and after the fire and their failure modes are compared with each other. The comparison of the results indicates significant changes in the load factor value, as well as the critical collapse mode of the structure before and after the fire.

Originality/value

Results indicate that the combination of plastic analysis and a genetic algorithm can predict the collapse mode of the structure before and after the fire accurately.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 April 2020

Nurcan Sarikaya Basturk and Abdurrahman Sahinkaya

The purpose of this paper is to present a detailed performance comparison of recent and state-of-the-art population-based optimization algorithms for the air traffic control…

Abstract

Purpose

The purpose of this paper is to present a detailed performance comparison of recent and state-of-the-art population-based optimization algorithms for the air traffic control problem.

Design/methodology/approach

Landing sequence and corresponding landing times for the aircrafts were determined by using population-based optimization algorithms such as artificial bee colony, particle swarm, differential evolution, biogeography-based optimization, simulated annealing, firefly and teaching–learning-based optimization. To obtain a fair comparison, all simulations were repeated 30 times for each of the seven algorithms, two different problems and two different population sizes, and many different criteria were used.

Findings

Compared to conventional methods that depend on a single solution at the same time, population-based algorithms have simultaneously produced many alternate possible solutions that can be used recursively to achieve better results.

Research limitations/implications

In some cases, it may take slightly longer to obtain the optimum landing sequence and times compared to the methods that give a direct result; however, the processing times can be reduced using powerful computers or GPU computations.

Practical implications

The simulation results showed that using population-based optimization algorithms were useful to obtain optimal landing sequence and corresponding landing times. Thus, the proposed air traffic control method can also be used effectively in real airport applications.

Social implications

By using population-based algorithms, air traffic control can be performed more effectively. In this way, there will be more efficient planning of passengers’ travel schedules and efficient airport operations.

Originality/value

The study compares the performances of recent and state-of-the-art optimization algorithms in terms of effective air traffic control and provides a useful approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 November 2013

Yancang Li, Chenguang Ban and Rouya Li

Ant colony algorithm is widely used in recent years as a heuristic algorithm. It provides a new way to solve complicated combinatorial optimization problems. Having been…

Abstract

Ant colony algorithm is widely used in recent years as a heuristic algorithm. It provides a new way to solve complicated combinatorial optimization problems. Having been enlightened by the behavior of ant colony's searching for food, positive feedback construction and distributed computing combined with certain heuristics are adopted in the algorithm, which makes it easier to find better solution. This paper introduces a series of ant colony algorithm and its improved algorithm of the basic principle, and discusses the ant colony algorithm application situation. Finally, several problems existing in the research and the development prospect of ACO are reviewed.

Details

World Journal of Engineering, vol. 10 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 894